• Title/Summary/Keyword: Insulating transformer

Search Result 166, Processing Time 0.032 seconds

Analysis of Produced By-products Due to Oil/Paper Degradation on Power Transformers (전력용 변압기의 열화에 의해 생성된 부산물의 분석)

  • Kim, Jae-Hoon;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1561-1565
    • /
    • 2007
  • According to thermal degradation on power transformers, it is known that electrical, mechanical and chemical characteristics for power transformer's oil-paper are changed. In the chemical property, especially, when the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. Also the paper breakdown is accompanied by an increase in the content of various furanic compounds within the dielectric liquid. It is known that furanic components in transformer oil come only from the decomposition of insulating paper rather than from the oil itself. Therefore the analysis of furanic degradation products provides a complementary technique to dissolved gas analysis for monitoring transformers when we evaluate the aging of insulating paper by the total concentration of carbon monoxide and carbon dioxide dissolved in oil only. Recently, the analysis of furanic compounds by high performance liquid chromatography(HPLC) using IEC 61198 method for estimating degradation of paper insulation in power transformers has been used more conveniently for assessment of oil-paper. It is know that the main products which is produced by aging are 2-furfuryl alcohol, 2-furaldehyde(furfural), 2-furoic acid, 2-acetylfuran, 5-methyl-2-furaldehyde, and 5-hydroxymethyl-2-furaldehyde. For investigating the accelerated aging process of oil-paper samples we manufactured accelerating aging equipment and we estimated variation of insulations at $140^{\circ}C$ temp. during 500 hours. Typical transformer proportions of copper, silicon steel and iron have been added to oil-paper insulation during the aging process. The oil-paper insulation samples have been measured at intervals of 100 hours. Finally we have analyzed that 2-furoic acid and 2-acetylfuran products of furanic compounds were detected by HPLC, and their concentrations were increased with accelerated aging time.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

A study on an experimental basis a special character of insulating oil the use of a transformers (변압기용 절연유의 특성에 관한 실험적 연구)

  • Kim, Sung-Dae;Park, Il-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5188-5193
    • /
    • 2011
  • This research is for temperature control of insulating oil inside the transformer. After I designed and manufactured various systems using Peltier element, which was thermal element, and Heat pipe, which was a cooling system, without electric power. The optimum system could be made by applying them to the temperature control for the insulating oil. I could verify that the combination type of Heat pipe 100 W+ Peltier 100W has a more outstanding capacity than pure Heat pipe 300 W within 60 degrees Celsius through experiments. Through this, I verify that the method of a proper design is prominent, and make an attempt at contribution to power saving effect and more effective control of Distributing board by using this combination type.

Insulation Design and Test of Model Windings for the Development of High Temperature Superconducting Transformer (고온초전도변압기 개발을 위한 모델 권선의 절연 설계 및 평가)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.19-22
    • /
    • 2003
  • In the response to increasing the demands for electrical energy, much effort aimed to develop and commercialize 1MVA HTS power equipments that is supported by a grant from center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology is going on in Korea. For the development, the cryogenic insulation and winding insulation of it in this paper are discussed. In the first many types of dielectric insulating tests were carried out. In detail Breakdown characteristics of $LN_2$, FRP and turn insulating films, flashover characteristics along the FRP surface in $LN_2$ were verified after distinguishing insulation components in HIS windings. And then model windings were designed and insulation test was conducted. These included a AC withstand voltage test of 50kV rms and a lightning impulse test of 150kV at peak.

  • PDF

Assessment of Ozone Degradation of Gasket Using Transformer (변압기용 가스켓의 오존 열화특성 평가 기술)

  • Soh, Jin-Joong;Shim, Dae-Sub;Kim, Bum-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.84-86
    • /
    • 2001
  • Acrylonitrile Butadiene Rubber (NBR) has been used as a transformer gasket material because the transformer gaskets should have high resistivity to oil and should not swell and deform when it contact to insulating oils. Serious cracks were observed in the gaskets being used and ozone test was performed on new, specimens. Cracks were also observed on specimens. So we have performed the following tests on the anti-oxidants containing new gaskets according in accordance with KEPCO purchase specifications; ozone resistance, oil resistance, mechanical properties before and after aging.

  • PDF

A Study on the Thermal distribution of the 30kVA Pole Transformer Due to the Rated load (30kVA 주상 변압기의 정격부하에 의한 열분포에 관한 연구)

  • Kim, M.K.;Kim, J.T.;Koo, J.Y.;Song, K.D.;Cho, Y.O.;Ha, B.N.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.292-295
    • /
    • 1991
  • The life of the transformers is significantly dependent upon the rate of thermal deterioration in the employed insulating materials. Therefore, the study should be based on hot-spot temperature considerations for the life expectancy and possible overload of transformer. We have measured directly temperature of the winding using thermocouples and these test results are compared with those obtained from computer simulation. In this work, our fundamental investigations are well described for the analysis in the thermal distribution of the oil-immersed transformer with the rating of 30kVA.

  • PDF

Example study of the dissipation factor change according to the oil filtering in large oil-filled transformer (유입변압기 오일필터링에 따른 유전정접 변화사례 고찰)

  • Kong, Tae-Sik;Kim, Hee-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2035_2036
    • /
    • 2009
  • This paper is purpose to understand the dissipation factor properties of the oil-filled large transformer according to the oil filtering. In order to know the insulation characteristic change by insulating oil filtering, we carried out the insulation diagnostic test for the same transformer before oil filtering and after. The insulation diagnosis tests are consist of the megger, the polarization index, the AC current test, the dissipation factor test and the partial discharge test, Especially we took notice of dissipation factor change, we analyzed and made a comparison of the two cases test result.

  • PDF

Investigations on Eco Friendly Insulating Fluids from Rapeseed and Pongamia Pinnata Oils for Power Transformer Applications

  • Thanigaiselvan, R.;Raja, T. Sree Renga;Karthik, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2348-2355
    • /
    • 2015
  • Transformer mineral oil which is normally hydrocarbon based is non- biodegradable and pollutes the environment in all aspects. Though vegetable oils are eco-friendly in nature and potentially could be used in transformers as a replacement for the mineral oil, there usage is restricted because of their oxidative instability. The present work focuses on using rapeseed oil and pongamia (pongamia pinnata) oil as effective alternatives for the traditional mineral oil in power transformer. The oxidative stability of the rapeseed oil and pongamia oil is increased by using combinations of the natural and synthetic anti-oxidants as additives. The parameters like breakdown voltage, viscosity, flash point, fire point are measured for the rapeseed oil and pongamia oil with and without the additives as per IEC and ASTM standards. The results shown encouraging changes in the parameter values and ensures the use of the oils as a potential alternative insulation in power transformers.

Insulating Design and Test of 22.9kV Class Mini-Model Transformer Considering AC Loss (AC Loss를 고려한 22.9kV급 Mini-Model 변압기의 절연 설계 및 시험)

  • 백승명;정종만;곽동순;김해종;석복렬;김상현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.420-424
    • /
    • 2004
  • This paper presents experimental data from model windings with different arrangement of coil in order to provide information to design a 22.9kV class HTS transformer. Before experiment, the composite insulation of two different type of HTS transformers are investigated. The first basic of investigation is a breakdown characteristic of liquid nitrogen and flashover characteristic on the GFRP surface under ac and impulse, The second investigation is insulation design, manufacture and test of model windings. These include a AC withstand voltage test of 50 kV rms and a lighting impulse test of 150 kV at peak.

Study on $H_2$ Sensing Characteristics of Gas Extractor for Dissolved Gas in Oil (유중 가스 검출장치의 수소 가스 감지 특성에 관한 연구)

  • Hwang, Kyu-Hyun;Seo, Ho-Joon;Rhie, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1162-1165
    • /
    • 2004
  • In oil-filled enuipment such as transformers, partial discharge or local overheating will precede a final shutdown. Accompanied with such problems is a decomposition of insulating material into gases, which are dissolved into the transformer oil. The gases dissolved in oil can be separated with some membranes based on the differences in permeability of membranes to different gases. This paper discuss the permeability characteristics of several membranes for separation hydrogen gas in oil. With result of this paper, it may become possible to detect fault-related gases from transformer oil and predict incipient failures in the future.

  • PDF