• 제목/요약/키워드: Insulating layer

검색결과 356건 처리시간 0.028초

Behavior of $CaF_2$ at the Initial Adsorption Stage on Si(114)

  • ;;;김희동;서재명
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.242-242
    • /
    • 2012
  • From the combined studies of STM and synchrotron photoemission, it has been found that a $CaF_2$ molecule is dissociated to Ca and F atoms on the $Si(114)-2{\times}1$ held at $500^{\circ}C$ at the initial adsorption stage. The Ca atoms form isolated and unique shapes of silicide molecules as shown in Fig. (a), while the F atoms are desorbed from the surface. On the other hand, beyond a $CaF_2$ coverage of 0.3 monolayer, as shown in Fig. (b), in addition to these silicide molecules, a 1-D facet [composed of (113) and (115) faces] adjacent to an etch pit has been observed, and F atoms are also detected from photoemission. These results imply that F atoms act as an etchant on Si(114) and CaF is adsorbed selectively on the (113) face of this facet. From the present studies, it has been concluded that, an insulating $CaF_2$ layer like that on Si(111) cannot be formed on Si(114), but a CaF-decorated nanofacet with a high aspect-ratio can be grown.

  • PDF

다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 가스감응특성 (Gassensing characteristics of carbon nanotube gas sensor using a diaphragm structure)

  • 김성운;한재천;조우성;주병권;조현섭;김영조
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.203-206
    • /
    • 2006
  • The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

  • PDF

다이아프램 구조를 이용한 탄소나노튜브 가스 센서의 제작 (Fabrication of carbon nanotube gas sensor using a diaphragm structure)

  • 김성운;한재천;조우성;주병권;조현섭;김영조
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.223-226
    • /
    • 2006
  • The micro-gas sensor based on carbon nanotubes (CNTs) was fabricated and its gas sensing characteristics on nitrogen dioxide ($NO_2$) have been investigated. The sensor consists of a heater, an insulating layer, a pair of contact electrodes, and CNT-sensing film on a micromachined diaphragm. The heater plays a role in the temperature change to modify sensor operation. Gas sensor responses of CNT-film to $NO_2$ at room temperature are reported. The sensor exhibits a reversible response with a time constant of a few minutes at thermal treatment temperature of $130^{\circ}C$.

  • PDF

$BaTiO_3$ 박막과 후막의 2중 유전체로 구서된 AC 분산형 ELD의 특성 (Characteristics of AC Power Electroluminescent Device with the Double Dielectric Layers of Thin and Thick Barium Titanate Films)

  • 이주현;채상훈;;김학수;박성
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.679-687
    • /
    • 2001
  • It is known that amorphous BaTiO$_3$ thin films have good insulating properties[1][2]. In this investigation, amorphous BaTiO$_3$ thin films were deposited by rf magnetron sputtering on thick BaTiO$_3$ films of AC powder EL devices which were fabricated by screen-printing. The electrical and optical properties of the EL devices were then investigated. Adding amorphous BaTiO$_3$ thin film, it showed that leakage current density was decreased. Especially, leakage current density was decreased more with he sample of 0.5-hour deposition than the sample of 4-hours deposition. This result led to the improvement of luminous efficiency by 11%. It could be concluded that proper amorphous BaTiO$_3$ thin film deposition improved the surface property of dielectric layer.

  • PDF

XPS 및 Surface voltage decay를 이용한 실리콘 절연재료의 표면분석 (Surface Analysis of Silicone Polymer used as Insulating Material by XPS and Surface Voltage Decay)

  • 연복희;이기택;박충렬;김남렬;서유진;허창수;조한구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.236-239
    • /
    • 2002
  • Surface states of silicone polymer treated by plasma were investigated by the analysis by x-ray photoelectron spectroscopy (XPS) and surface voltage decay. Plasma treatment causes the silica-like oxidative layer, which is confirmed with XPS, and lowers surface resistivity with increasing the plasma treatment time. Using the decay time constant of surface voltage, the calculated surface resistivity was compared with the value directly measured by a voltage-current method. A good agreement between two methods was obtained. In addition, we estimated the thermal activation energy for surface conduction, Based on our results, we could understand the relationship between surface chemical states and surface electrical properties.

  • PDF

Correlation between Physical Defects and Performance in AlGaN/GaN High Electron Mobility Transistor Devices

  • Park, Seong-Yong;Lee, Tae-Hun;Kim, Moon-J.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.49-53
    • /
    • 2010
  • Microstructural origins of leakage current and physical degradation during operation in product-quality AlGaN/GaN high electron mobility transistor (HEMT) devices were investigated using photon emission microscopy (PEM) and transmission electron microscopy (TEM). AlGaN/GaN HEMTs were fabricated with metal organic chemical vapor deposition on semi-insulating SiC substrates. Photon emission irregularity, which is indicative of gate leakage current, was measured by PEM. Site specific TEM analysis assisted by a focused ion beam revealed the presence of threading dislocations in the channel below the gate at the position showing strong photon emissions. Observation of electrically degraded devices after life tests revealed crack/pit shaped defects next to the drain in the top AlGaN layer. The morphology of the defects was three-dimensionally investigated via electron tomography.

Relationship Between AC and DC Magnetic Properties of an Iron-Based Amorphous Alloy for High Frequency Applications

  • Choi, Y.S.;Noh, T.H.;Lim, S.H.
    • Journal of Magnetics
    • /
    • 제1권1호
    • /
    • pp.24-30
    • /
    • 1996
  • The relationship between effective permeability and the remanence ratio of an Fe-based amorphous alloy (Metglas 2605S3A) is investigated over a wide frequency range, in an effort to understand magnetization behavior of the alloy. In the frequency range from 1 to 200 kHz, the permeability is maximum at the remanence ratio of 0.4-0.5 and, at frequencies over 500 kHz, the correlation with negative coefficients emerges indicating that the permeability decreases with the remanent ratio, except for the ribbon coated with an insulating layer of MgO which exhibits both high values of the effective permeability and remanence ratio. It is considered from the correlation results that the boundary at which the dominant magnetization mechanism changes from domain wall motion to spin rotation is near 500 kHz. The core loss is also investigated as a function of annealing time when the samples are annealed at a fixed temperature of $435^{\circ}C$. The core loss in most cases decreases with the annealing time, the degree of the loss may consist of the hysteresis loss and anomalous eddy current loss. The two loss components are considered to be of similar magnitudes at low frequencies while, at high frequencies, the dominant contribution to the total loss is the anomalous loss.

  • PDF

Numerical Analysis of Loss Power Properties in the Near-Field Electromagnetic Wave Through A Microstrip Line for Multilayer Magnetic Films with Different Levels of Electrical Conductivity

  • Lee, Jung-Hwan;Kim, Sang-Woo
    • Journal of Magnetics
    • /
    • 제13권3호
    • /
    • pp.92-96
    • /
    • 2008
  • There are few reports of high frequency loss behavior in the near-field for magnetic films with semiconducting properties, even though semiconducting magnetic materials, such as soft magnetic amorphous alloys and nanocrystalline thin films, have been demonstrated. The electromagnetic loss behavior of multilayer magnetic films with semiconducting properties on the microstrip line in quasi-microwave frequency band was analyzed numerically using a commercial finite-element based electromagnetic solver. The large increase in the absorption performance and broadband characteristics of the semiconducting/insulating layer magnetic films examined in this study were attributed to an increase in the loss factor of resistive loss. The electromagnetic reflection increased significantly with increasing conductivity, and the loss power deteriorated significantly. The numerical results of the magnetic field distribution showed that a strong radiated signal on the microstrip line was emitted with increasing conductivity and decreasing film thickness due to re-reflection of the radiated wave from the surface of the magnetic film, even though the emitted levels varied with film thickness.

Surface Modification of TiO2 Nanoparticles with Phenyltrimethoxysilane in Dye-sensitized Solar Cells

  • Chan, Yong-June;Kum, Byung-Gon;Park, Yoon-Cheol;Kong, Eui-Hyun;Jang, Hyun Myung
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.415-418
    • /
    • 2014
  • Phenyltrimethoxysilane (PTMS) was anchored onto the sensitized $TiO_2$ nanoparticles. This insulating molecular layer effectively inhibited the charge recombination at the interface of $TiO_2$/electrolyte in the dye-sensitized solar cells (DSCs) without sacrificing the dye-loading capacity of the nanocrystalline $TiO_2$. DSCs using PTMS-modified $TiO_2$ exhibited a short-circuit current ($J_{SC}$) of $15.9mA/cm^2$, an open-circuit voltage ($V_{OC}$) of 789 mV, and a fill factor (FF) of 68.2%, yielding an overall conversion efficiency (${\eta}$) of 8.55% under $100mW/cm^2$ illumination. The resulting cell efficiency was improved by ~10% as compared with the reference cell.

Construction of Membrane Sieves Using Stoichiometric and Stress-Reduced $Si_3N_4/SiO_2/Si_3N_4$ Multilayer Films and Their Applications in Blood Plasma Separation

  • Lee, Dae-Sik;Choi, Yo-Han;Han, Yong-Duk;Yoon, Hyun-C.;Shoji, Shuichi;Jung, Mun-Youn
    • ETRI Journal
    • /
    • 제34권2호
    • /
    • pp.226-234
    • /
    • 2012
  • The novelty of this study resides in the fabrication of stoichiometric and stress-reduced $Si_3N_4/SiO_2/Si_3N_4$ triple-layer membrane sieves. The membrane sieves were designed to be very flat and thin, mechanically stress-reduced, and stable in their electrical and chemical properties. All insulating materials are deposited stoichiometrically by a low-pressure chemical vapor deposition system. The membranes with a thickness of 0.4 ${\mu}m$ have pores with a diameter of about 1 ${\mu}m$. The device is fabricated on a 6" silicon wafer with the semiconductor processes. We utilized the membrane sieves for plasma separations from human whole blood. To enhance the separation ability of blood plasma, an agarose gel matrix was attached to the membrane sieves. We could separate about 1 ${\mu}L$ of blood plasma from 5 ${\mu}L$ of human whole blood. Our device can be used in the cell-based biosensors or analysis systems in analytical chemistry.