• Title/Summary/Keyword: Insulating layer

Search Result 357, Processing Time 0.029 seconds

Electrochemical Machining Using a Disk Electrode for Micro Internal Features (미세 내부 형상 가공을 위한 디스크 전극 이용 전해 가공)

  • Jo, Chan-Hee;Kim, Bo-Hyun;Chu, Chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.139-144
    • /
    • 2008
  • Micro electrochemical machining was investigated to machine micro internal features. This method uses a micro disk tool electrode and can easily machine micro features inside of a micro hole, which are very difficult to make by the conventional processes. In order to limit the machining area and localize the electrochemical dissolution, ultra short pulses were used as power source and a micro disk electrode with insulating layer on its surface was used as a tool electrode. By electrochemical process, internal features, such as groove array, were fabricated on the stainless steel plate.

A Study on Fabrication of Piezorresistive Pressure Sensor (벌크 마이크로 머쉬닝에 의한 다결정 실리콘 압력센서 제작 관한 연구)

  • 임재홍;박용욱;윤석진;정형진;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.677-680
    • /
    • 1999
  • Rapid developing automation technology enhances the need of sensors. Among many materials, silicon has the advantages of electrical and mechanical property, Single-crystalline silicon has different piezoresistivity on 야fferent directions and a current leakage at elevated temperature, but poly-crystalline silicon has the possibility of controling resistivity using dopping ions, and operation at high temperature, which is grown on insulating layers. Each wafer has slightly different thicknesses that make difficult to obtain the precisely same thickness of a diaphragm. This paper deals with the fabrication process to make poly-crystalline silicon based pressure sensors which includes diaphragm thickness and wet-etching techniques for each layer. Diaphragms of the same thickness can be fabricated consisting of deposited layers by silicon bulk etching. HF etches silicon nitride, HNO$_3$+HF does poly -crystalline silicon at room temperature very fast. Whereas ethylenediamice based etchant is used to etch silicon at 11$0^{\circ}C$ slowly.

  • PDF

Torque Formularization of Harmonic Side Drive Motor by Cnformal Mapping (등각사상을 이용한 하모닉 모터의 토크 정식화)

  • Yun, S.J.;Lee, E.W.;Lee, D.J.;Lee, J.H.;Jeong, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.67-69
    • /
    • 1998
  • In order to design or predict the performance of a cylindrical electrostatic motor it is necessary to analyze the torque generated by such a structure. In this paper a simple but sufficiently accurate analytical model is developed for use in design. Conformal mapping are used to model the capacitance and torque of the motor as a function of the rotor position, using a quasi-static, two-dimension approximation, the effect of an insulating dielectric layer on the stator or rotor is also evaluated.

  • PDF

Indirect Electrochemical Oxidation of Phenol by Ce4+, Controlling Surface Insulation of Au Electrode

  • Pyo, Myoung-Ho;Moon, Il-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.899-902
    • /
    • 2005
  • Indirect electrochemical oxidation of phenol by $Ce^{4+}$ was investigated in sulfuric acid solutions. It was found that electrode fouling during oxidation of phenol can be controlled by adjusting the time interval (TI) of double potential steps (DPSs). While the electroactivity was greatly decreased after several DPSs of a relatively long TI, repeated DPSs with a short potential pulse showed substantial amounts of electroactivity after a few hundreds or thousands DPS, suggesting that the formation of an insulating layer can be controlled by adjusting a potential program. Effectiveness of the consecutive application of DPSs for phenol decomposition was confirmed by GC-MS.

Experiment on Heat Loads Invaded into HTS Cable Cryostat under Cryogenic Insulation System (고온초전도 케이블용 cryostat의 단열조건에 대한 열침입량 측정)

  • Kim, Do-Hyeong;Jung, Won-Moog;Kim, Dong-Lak;Yang, Hyung-Suk;Cho, Seung-Yon;Hwang, Si-Dole
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1564-1569
    • /
    • 2004
  • Insulating a heat from the environment is the most important in cryogenic applications like HTS cable system. Vacuum and MLI(Multi-Layer Insulation) have been widely used to get highly efficient cryogenic insulation. In this study, experiment on annular cylinder regarded as basic model of HTS cable cryostat has been performed to measure the heat loads. To investigate the effectiveness of radiation shields in cryogenic insulation system, the experiments are carried out to various number of the shields. The measured values are compared with the results estimated theoretically. The heat loads invaded from the environment was determined by liquid nitrogen boil-off calorimetry.

  • PDF

Effects of Pre-formed Space Charges by Negative DC Voltages on PD Characteristics in XLPE (부극성 직류전압에 의해 사전 형성된 공간전하가 XLPE의 부분방전특성에 미치는 영향)

  • 황보승;이준호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.310-313
    • /
    • 2003
  • The purpose of this paper is to evaluate the effects of pre-formed space charges by DC stress on partial discharge(PD) characteristics in XLPE. We have suggested a modified pulsed electro-acoustic(PEA) method and successfully measured both space charge distribution and current simultaneously. It has been demonstrated that the PD patterns are strongly influenced by the pre-formed space charge distributions, which are hardly disappeared up to AC 8㎸ in electrode configuration including air gap between XLPE layer and electrode. From the results, it could be said that the pre-formed space charges by DC stress can play harmful and dangerous roles in insulating system under AC operating voltages because of the field distortion and localization due to the pre-formed space charge.

Permittivity Characteristics of SiO/TiN Thin Film according to Coating Thickness (SiO/TiN 박막의 증착두께에 따른 유전율 특성)

  • 김창석;이우선;정천옥;김병인
    • Electrical & Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.570-575
    • /
    • 1997
  • In this days, the thinner film of dielectric materials is required while its capacitance is required to be still large at the VLSI process. Most of such VLSI have MOS structures. For the research on this requirement, MOS capacitors were fabricated on the silicon wafer in four different thickness groups by RF sputtering method. SiO of the SiO/TiN film is used as the insulating layer and TiN is chosen as the barrier against the diffusion of Al which is the terminal connected by ohmic contact because TiN has the advantageous properties such as good thermal stability and very low diffusion rate in spite of its relatively low specific resistance. In this study their electrical and optical characteristics are investigated to find refractive index, absorption coefficient and Permittivity.

  • PDF

Charging Characteristics of Electrostatic Sprayer Applied Square Pulse (구형파 펄스를 인가한 정전분무 장치의 대전량 특성)

  • 박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.573-578
    • /
    • 2003
  • In this study, new type of induction charging system for electrostatic spraying was manufactured and proposed to improve the electrical safety and charging efficiency. And parameters of proposed system to generate the maximum deposition current with electrical safety were selected and investigated. The selected parameters were frequency of square pulse and thickness of insulation material, outer diameter of device and thickness and positions of electrode. Charging quantity of water drop was measured by deposition current detected from sensing plate indirectly. The maximum deposition current for each parameter were 3.5[uA] at the frequency of 15[kHz] and thickness of 0.25[mm] insulating layer. And maximum deposition currents were 2.8[uA] and 3.0[uA] at 25[mm] outer diameter of charging device and 0.25[mm] thickness of electrode each. Effects of electrode position from spraying nozzle on deposition current was a little.

Fabrication of Electrostatic Chucks Using Borosilicate Glass Coating as an Insulating Layer (붕규산염 유리를 절연층으로 도포한 정전척의 제조)

  • 방재철;이지형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.390-393
    • /
    • 2001
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. The glass coatings on the stainless steel substrates ranged from 100 $\mu\textrm{m}$ to 150 $\mu\textrm{m}$ thick. The adhesion of the glass coatings was found to be excellent such that it was able to withstand moderate impact tests and temperature cycling to over 300$^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and higher applied voltages when deviations were observed to occur. The deviation is due to increased leakage current at higher temperature and applied voltage as the electrical resistivity drops.

  • PDF

Physical and Electrical Properties of Amorphous Carbon(a-C) Thin Films Grown by High Rate DC Magnetron Sputtering method (고효율 DC 마그네트론 스파터링법으로 성장시킨 다이아몬드상 카본의 물리적, 전기적 특징)

  • Park, Yong-Seob;Han, J.G.;Hong, B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.83-87
    • /
    • 2003
  • Thin films of amorphous carbon (a-C) generally combine high wear resistance with low friction coefficients and a-C films have widespread applications as protective coatings and passivation of electrical circuit and insulating layer. In this work we deposited the amorphous carbon (a-C) films on silicon substrate with a high rate DC magnetron sputtering system. It is obtained parameters on the deposition rate and physical properties of a-C films using a wide range of Ar gas pressure and DC power. The physical properties of the films were analyzed by Nanoindenter and AFM (Atomic Force Microscopy), The electrical properties were investigated by electrical conductivity measurement.

  • PDF