• 제목/요약/키워드: Insular cortex

검색결과 19건 처리시간 0.021초

방광(膀胱)과 위중(委中)의 중추신경로와의 연계성에 관한 연구 (Studies on the Relationship of the Central Neural Pathways to the Urinary Bladder and Wijung($BL_{40}$))

  • 이창현;김호;이광규;정한솔
    • 동의생리병리학회지
    • /
    • 제23권4호
    • /
    • pp.805-817
    • /
    • 2009
  • This study was to investigate central localization of neurons projecting to the urinary bladder and urinary bladder-related acupoints(Wijung, $BL_{40}$) and neurons of immunoreactive to hormones and hormone receptors regulating urinary bladder function by using peudorabies virus(PRV). In this experiment, Bartha's strain of pseudorabies virus was used in rats to trace central localization of urinary bladder-related neurons and urinary bladder-related acupoints($BL_{40}$) which can regulate urinary system. PRV was injected into the urinary bladder and acupoints($BL_{40}$) related urinary system. After six days survival of rats, mainly common labeled neurons projecting to the urinary bladder and urinary bladder-related acupoints were identified in spinal cord, medulla, pons and diencephalon by PRV immunohistochemical staining method. First-order PRV labeled neurons projecting to urinary bladder and urinary bladder-related acupoints were found in the cervical, thoracic, lumbar and sacral spinal cord. Commonly labeled preganglionic neurons were labeled in the lumbosacral spinal cord and thoracic spinal cord. They were found in the lateral horn area(sacral parasympathetic nucleus and intermediolateral nucleus), lamina V-X, intermediomedial nucleus and dorsal column area. The area of sensory neurons projecting to urinary bladder and Wijung($BL_{40}$) was L5-S2 spinal ganglia and T12-L1 spinal ganglia, respectively. In the brainstem, the neurons were labeled most evidently and consistently in the nucleus of tractus solitarius, area postrema, dorsal motor nucleus of vagus nerve, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), C3 adrenalin cells, parapyramidal area(lateral paragigantocellular nucleus), locus coeruleus, subcoeruleus nucleus, A5 cell group, Barrington's nucleus and periaqueductal gray matter. In the diencephalon, PRV labeled neurons were marked mostly in the paraventricular nucleus and a few ones were in the lateral hypothalamic nucleus, posterior hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, median eminence, perifornical nucleus, periventricular nucleus and suprachiasmatic nucleus. In cerebral cortex, PRV labeled neurons were marked mostly in the frontal cortex, 1,2 area, hind limb area, agranular insular cortex. Immunoreactive neurons to Corticotropin releasiing factor(CRF), Corticotropin releasiing factor-receptor(CRF-R), c-fos and serotonin were a part of labeled areas among the virus-labeled neurons of urinary bladder and Wijung($BL_{40}$). The commonly labeled areas were nucleus tractus solitarius, area postrema, reticular nucleus, raphe nuclei(obscurus, magnus and pallidus), locus coeruleus, A5 cell group, Barrington,s nucleus, arcuate nucleus, paraventricular nucleus, frontal cortex 1, 2 area, hind limb, and perirhinal(agranular insular) cortex. These results suggest that overlapped CNS locations are related with autonomic nuclei which regulate the functions of urinary bladder-relate organs and it was revealed by tracing PRV labeled neurons projecting urinary bladder and urinary bladder-related acupoints. These commonly labeled areas often overlap with the neurons connected with hormones and hormone receptors related to urination.

Layer-specific serotonergic induction of long-term depression in the prefrontal cortex of rats

  • Shin, Dongchul;Cho, Kwang-Hyun;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.517-527
    • /
    • 2020
  • Layer 2/3 pyramidal neurons (L2/3 PyNs) of the cortex extend their basal dendrites near the soma and as apical dendritic tufts in layer 1, which mainly receive feedforward and feedback inputs, respectively. It is suggested that neuromodulators such as serotonin and acetylcholine may regulate the information flow between brain structures depending on the brain state. However, little is known about the dendritic compartment-specific induction of synaptic transmission in single PyNs. Here, we studied layer-specific serotonergic and cholinergic induction of long-term synaptic plasticity in L2/3 PyNs of the agranular insular cortex, a lateral component of the orbitofrontal cortex. Using FM1-43 dye unloading, we verified that local electrical stimulation to layers 1 (L1) and 3 (L3) activated axon terminals mostly located in L1 and perisomatic area (L2/3). Independent and AMPA receptor-mediated excitatory postsynaptic potential was evoked by local electrical stimulation of either L1 or L3. Application of serotonin (5-HT, 10 μM) induced activity-dependent longterm depression (LTD) in L2/3 but not in L1 inputs. LTD induced by 5-HT was blocked by the 5-HT2 receptor antagonist ketanserin, an NMDA receptor antagonist and by intracellular Ca2+ chelation. The 5-HT2 receptor agonist α-me-5-HT mimicked the LTD induced by 5-HT. However, the application of carbachol induced muscarinic receptor-dependent LTD in both inputs. The differential layer-specific induction of LTD by neuromodulators might play an important role in information processing mechanism of the prefrontal cortex.

Advances in Optical Tools to Study Taste Sensation

  • Gha Yeon, Park;Hyeyeong, Hwang;Myunghwan, Choi
    • Molecules and Cells
    • /
    • 제45권12호
    • /
    • pp.877-882
    • /
    • 2022
  • Taste sensation is the process of converting chemical identities in food into a neural code of the brain. Taste information is initially formed in the taste buds on the tongue, travels through the afferent gustatory nerves to the sensory ganglion neurons, and finally reaches the multiple taste centers of the brain. In the taste field, optical tools to observe cellularlevel functions play a pivotal role in understanding how taste information is processed along a pathway. In this review, we introduce recent advances in the optical tools used to study the taste transduction pathways.

족삼리(足三里) 배혈(配穴)에 따른 전침(電鍼)이 흰쥐 대뇌피질(大腦皮質)의 NADPH-diaphorase와 nNOS, NPY, VIP 신경세포(神經細胞)에 미치는 영향(影響) (Effect of Joksamni combination on NADPH-diaphorase, neuronal Nitric Oxide Synthase, Neuropeptide Y and Vasoactive Intestinal Peptide in the cerebral cortex of Spontaneously Hypertensive Rat)

  • 정인기;이재동;김창환
    • Journal of Acupuncture Research
    • /
    • 제20권5호
    • /
    • pp.118-132
    • /
    • 2003
  • Objective: The aim of this study was to investigate the effects of Joksamni(ST36) combination on NAD PH-diaphorase, neuronal nitric oxide synthase(nNOS), neuropeptide Y(NPY) and vasoactive intestinal peptide (VIP) in the cerebral cortex of spontaneously hypertensive rat. Methods: The experimental groups were divided into four groups: Normal, Joksamni(ST36), Joksamni(ST36)+Eumneungcheon(SP9), and Joksamni(ST36)+Gokji(LI11). Needles were inserted into acupoints at the depth of 0.5cm with basic insertion method. Electroacupuncture was done under the condition of 2Hz electrical biphasic pulses with continuous rectangular wave lasting for 0.2ms until the muscles produced visible contractions. Such stimulation was applied continuously for 10 minutes, 1 time every 2 days for 10 sessions of treatments. Thereafter we evaluated changes in NADPH-d positive neurons histochemically and changes in nNOS, NPY and VIP positive neurons immunohistochemically. Results: The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in primary somatosensory cortex, visual cortex, auditory cortex, perirhinal cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group with the exception of primary somatosensory cortex. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in auditory cortex, perirhinal cortex, insular cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. The optical densities of NPY positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in primary motor cortex, primary somatosensory cortex, cingulate cortex as compared to the Joksamni (ST36) and Joksamni(ST36)+Eumneungcheon(SP9) groups. The optical densities of VIP positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group were significantly increased in all areas of cerebral cortex except for cingulate cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in auditory cortex, cingulate cortex, perirhinal cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. Conclusions: The result demonstrated that electroacupuncture on Joksamni(ST36) and its combination change the activities of the NO system and peptidergic system in the cerebral cortex of SHR and that acupoint combination is one of the important parameters for the effects.

  • PDF

미각자극에 따른 감각 및 감성적 미각정보 처리과정의 기능적 매핑 비교 (Comparisons of functional brain mappings in sensory and affective aspects following taste stimulation)

  • 이경희
    • 감성과학
    • /
    • 제15권4호
    • /
    • pp.585-592
    • /
    • 2012
  • 음식물 섭취는 영양상태의 유지와 생존을 위해 필요하며, 미각은 가장 기본적인 감각 중의 하나이다. 맛을 느끼는 미각세포는 다섯 가지 기본 맛(단맛, 쓴맛, 짠맛, 신맛, 감칠맛)에 대해 반응한다. 그러나 뇌에서 맛감각의 처리과정과 미각피질의 조직화된 원리에 대한 이해는 여전히 부족한 실정이다. 최근 기능적 자기공명영상(fMRI), 뇌자도(MEG), 광영상(optical imaging)을 이용하여 미각 자극에 대한 뇌의 반응들을 영상화하는 연구들이 진행되고 있다. 뇌 활성 변화를 관찰할 수 있는 이들 뇌 영상 기법들은 서로 직접적인 비교 데이터를 제공하지는 못하지만, 이러한 기법들은 상호 보완적이다. 따라서 이러한 기법들을 이용한 데이터들의 상호비교는 미각 자극에 대해 반응하는 뇌의 시간-공간적인 활성 패턴 변화를 이해하는데 많은 도움을 준다. 본 연구는 감각 및 감성적 측면에서의 미각 자극에 따른 뇌의 정보처리에 있어서 미각영역의 활성화에 관한 영상매핑에 대해 최근까지 밝혀진 결과들과 연구동향을 소개하고자 한다. 미각 자극에 따른 뇌의 영상 변화를 관찰하여 구조해부학적 지도를 만드는 것은 매우 복잡한 미각의 신경회로망을 이해하는데 도움이 될 것으로 사료된다.

  • PDF

경련 중첩증 환자의 확산 강조 영상 소견: 2 증례 보고 (Diffusion-Weighted Imaging Findings in Patients with Status Epilepticus: Report of Two Cases)

  • Sung Il Jung;Bae Ju Kweon;Keon Ha Kim;Moon Hee Han;Kee-Hyun Chang
    • Investigative Magnetic Resonance Imaging
    • /
    • 제7권1호
    • /
    • pp.56-60
    • /
    • 2003
  • 저자들은 2명의 경련 중첩증 환자들의 확산강조 자기공명영상을 보고하고자 한다. 확산강조 영상은 대뇌 반구에서 세포독성 부종을 시사하는 현성확산계수의 감소가 동반된 국소적 또는 미만성 고신호강도를 보였다. 이러한 고신호강도는 한 환자에서는 양측 측두두정후두엽과 도피질, 다른환자에서는 편측성 측두엽에서 나타났다.

  • PDF

New Records of Marine Algae from Korea II

  • Oak, Jung-Hyun;Keum, Yeon-Shim;Hwang, Mi-Sook;Oh, Yoon-Sik
    • ALGAE
    • /
    • 제20권3호
    • /
    • pp.177-181
    • /
    • 2005
  • Two species of marine algae, Fauchea spinulosa Okamura et Segawa (Rhodymeniaceae, Rhodophyceae) and Stictyosiphon soriferus (Reinke) Rosenvinge (Chodariaceae, Phaeophyceae) were newly collected from the southern coast and Cheju Island of Korea. Fauchea spinulosa was collected from subtidal zone in the insular region of the southern coast. Plants were erect from the discoidal holdfast with short stipe, pinkish to deep red, cartilageneous, dichotomously and flabellately branched, and 10-15 cm high, 5-15 mm broad. Tetrasporangia are cruciately divided and nemathecia occurred on a side of the branches. Cystocarps were mostly coronate in marginal area and spermatangia were scattered on both sides of branches. Stictyosiphon soriferus commonly occurs on muddy and sandy intertidal flat of Namhaedo located on the southern coast. Plants are epilithic, light brown, terete, 3-5 cm high, and branched heavily in irregular or alternate manner, arising from a small holdfast with rhizoidal clumps. Plurilocular sporangia were scattered in patches and slightly swollen above the cortex of the whole filament. Unilocular sporangia were not found.

Gait Characteristic in a Stroke Patient with an Intact Corticospinal Tract and Corticoreticular Pathway: A Case Study

  • Yeo, Sang Seok;Cho, In Hee
    • The Journal of Korean Physical Therapy
    • /
    • 제30권2호
    • /
    • pp.73-77
    • /
    • 2018
  • Purpose: The prefrontal lobe, supplementary motor area, cerebellum, and basal ganglia are activated during gait. In addition, gait is controlled by nerves, such as the corticospinal tract (CST) and corticoreticular pathway (CRP). In this study, the presence of an injury to the CST and CRP was identified by diffusion tensor imaging and the characteristics of the gait pattern were investigated according to inferior cerebral artery infarction. Methods: One patient and six control subjects of a similar age participated. A 69-year-old female patient had an injury to the left basal ganglia, insular gyrus, corona radiata, dorsolateral prefrontal cortex, and postcentral gyrus due to an inferior cerebral artery infarction. Diffusion tensor imaging (DTI) data was acquired 4 weeks after the stroke. The kinematic and spatio-temporal parameters of gait were collected using a three-dimensional gait analysis system. Results: On 4 weeks DTI, the CST and CRP in the affected hemisphere did not show injury to the affected and unaffected hemisphere. Gait analysis showed that the cadence of spatio-temporal parameter was decreased significantly in the patient. The angle of the knee joint was decreased significantly in the affected and unaffected sides compared to the control group. Conclusion: The results of diffusion tensor imaging showed that although the patient was evaluated to be capable of an independent gait, the quality and quantity of gait might be reduced. This study could help better understand the gait ability analysis of stroke patients and the abnormal gait pattern of patients with a brain injury.

뇌피질 이형성증의 3차원 뇌표면 연출영상 (Three-Dimensional Brain Surface Rendering Imaging of Cortical Dysplasia)

  • 황승배;곽효성;이상용;진공용;한영민;정경호
    • Investigative Magnetic Resonance Imaging
    • /
    • 제14권2호
    • /
    • pp.126-133
    • /
    • 2010
  • 목적 : 뇌피질이형성증에서 3차원 뇌표면연출영상의 유용성을 평가하고자 하였다. 대상 및 방법 : 19명의 국소적 뇌피질이형성증을 대상으로 MP-RAGE영상을 이용하여 3차원 뇌 표면연출영상을 얻었다. 비정상적인 뇌이랑과 뇌고랑의 해부학적 위치, 침범부위의 뇌이랑과 뇌고랑의 형태와 모양을 평가하였다. 결과 : 비정상적인 뇌이랑과 뇌고랑의 모양은 19명 중 18명의 환자에서 관찰되었다. 병변 부위의 뇌이랑과 뇌고랑의 형태와 배열, 침범모양은 뇌표면연출영상에서 명확하게 평가되었다. 무뇌회증에서는 엽이 구분되지 않았고, 뇌고랑이 없고 두껍고 매끄러운 뇌이랑이 하나의 엽으로 되어 있었다. 분열뇌증에서는 분열틈을 중심으로 여러 뇌이랑이 바퀴모양을 형성하고, 넓은 뇌이랑을 가지고 있었다. 일측성 거대뇌증에서는 병변측 대뇌반구가 커져 있었고, 두껍고 넓은 뇌이랑을 가지고 있었다. 선천성 양측 실비안주위 증후군에서는 섬피질이 노출되어 있었고, 병변 부위의 뇌이랑은 두꺼워져 있었다. 국소적 뇌피질이형성증에서는 균일하지 않은 톱니 모양이나 두껍고 커진 뇌이랑이 보였다. 이중 피질 증후군에서는 뇌이랑과 뇌고랑의 이상소견은 보이지 않았다. 결론 : 뇌피질이형성증 환자에서 3차원 뇌표면연출영상은 비정상적인 뇌피질의 뇌이랑과 뇌고랑 의 모양을 평가할 수 있고 정확한 병변의 위치를 평가하는 데 유용하다. 뇌표면연출영상은 수술 전 계획을 세우는 데 유용한 정보를 제공한다.