• Title/Summary/Keyword: Instrumented indentation technique

Search Result 33, Processing Time 0.021 seconds

Measurement of Mmechanical Properties in Weld Zone of Nuclear Material using an Instrumented Indentation Technique (계장형 압입시험법에 의한 원자력 구조재료 용접 물성치 측정)

  • Song, Kee-Nam;Ro, Dong-Seong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • Different microstructures in the weld zone of a metal structure including a fusion zone and heat affected zone are formed as compared to the base material. Thus, the mechanical properties in the weld zone are different from those in the base material. As the basic data for reliably understanding the structural characteristics of welded nuclear material, the mechanical properties in the weld zone and base material for a Zircaloy-4 strap and Hastelloy${(R)}$-X alloy strap are measured using an instrumented indentation technique (IIT) in this study.

Analytical Approaches of Surface-Local Deformations for the Measurement of Indentation Hardness (압입경도 측정을 위한 표면변형 분석기법 비교)

  • Lee, Yun-Hee;Kim, Kuk-Hwan;Nahm, Seung-Hoon;Kwon, Dongil
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.416-422
    • /
    • 2009
  • Approaches for analyzing indentation hardness are still controversial, although the instrumented indentation technique has been generalized as one powerful method that can record surface deformation behaviors. Material pile-ups around the indenter/surface contact region make the conventional Oliver and Pharr's analysis on the instrumented indentation curve inaccurate. Thus, in order to prove the validity of the hardness analyses, five approaches were applied to the experimental data obtained from fused quartz and (100) monocrystalline tungsten specimens; an elastic recovery analysis on instrumented indentation curves, three indentation work analyses on the unit plastic volume, and a differentiation analysis on remnant indentation morphologies were tried. Five kinds of indentation hardness overlapped on one result plot showed the validity of each analysis. The modified indentation work approach based on a new definition of plastic volume showed consistent results with those from the Oliver-Pharr's and image differentiation methods. In the case of pile-up accompanying deformation, the Oliver-Pharr's and image differentiation methods showed the upper and lower limits of indentation hardness, respectively.

Instrumented Indentation Technique: New Nondestructive Measurement Technique for Flow Stress-Strain and Residual Stress of Metallic Materials (계장화 압입시험: 금속재료의 유동 응력-변형률과 잔류응력 평가를 위한 신 비파괴 측정 기술)

  • Lee, Kyung-Woo;Choi, Min-Jae;Kim, Ju-Young;Kim, Kwang-Ho;Kwon, Dong-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.306-314
    • /
    • 2006
  • Instrumented indentation technique is a new way to evaluate nondestructive such mechanical properties as flow properties, residual stress and fracture toughness by analyzing indentation load-depth curves. This study evaluated quantitatively the flow properties of steels and residual stress of weldments. First, flow properties can be evaluated by defining a representative stress and strain from analysis of deformation behavior beneath the rigid spherical indenter and the parameters obtained from instrumented indentation tests. For estimating residual stress, the deviatoric-stress part of the residual stress affects the indentation load-depth curve, so that by analyzing the difference between the residual-stress-induced indentation curve and residual-stress-free curve, the quantitative residual stress of the target region can be evaluated. The algorithm for flow property evaluation was verified by comparison with uniaxial tensile test and the residual stress evaluation model was compared to mechanical cutting and ED-XRD results.

Non-equibiaxial residual stress evaluation methodology using simulated indentation behavior and machine learning

  • Seongin Moon;Minjae Choi;Seokmin Hong;Sung-Woo Kim;Minho Yoon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1347-1356
    • /
    • 2024
  • Measuring the residual stress in the components in nuclear power plants is crucial to their safety evaluation. The instrumented indentation technique is a minimally invasive approach that can be conveniently used to determine the residual stress in structural materials in service. Because the indentation behavior of a structure with residual stresses is closely related to the elastic-plastic behavior of the indented material, an accurate understanding of the elastic-plastic behavior of the material is essential for evaluation of the residual stresses in the structures. However, due to the analytical problems associated with solving the elastic-plastic behavior, empirical equations with limited applicability have been used. In the present study, the impact of the non-equibiaxial residual stress state on indentation behavior was investigated using finite element analysis. In addition, a new nonequibiaxial residual-stress prediction methodology is proposed using a convolutional neural network, and the performance was validated. A more accurate residual-stress measurement will be possible by applying the proposed residual-stress prediction methodology in the future.

Evaluation of Residual Stress using IITC of Experimental Stress Analysis on Concrete Structure (실험적 응력해석의 IITC 방식에 의한 콘크리트 구조물 잔류응력 평가)

  • Lee, Ho Beom;Han, Sang Hee;Jang, Il Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.415-424
    • /
    • 2014
  • The carrying capacity of existing concrete structures is evaluated by the measured data from displacement and strain gauges for given loads and the results of numerical analysis that are compared with the measured ones. Consequently, this process could be accomplished in doing the direct measurement of residual stress on existing concrete. This study is concerned with the development of IITC (Instrumented Indentation Technique for Concrete) system which is based on the experimental stress analysis technique using non-destructive test method to evaluate the residual stress of concrete structures depending on the types of applied loadings in analysing indentation load - indentation depth curve derived experimentally on concrete surface. As a result, in this paper, almost all of systematized H/W and S/W were newly developed to estimate the residual stresses of concrete structures. Thus, the creation of new experimental equations for deriving residual stresses and automatical calculations of residual stresses using the empirical formula can lead to evaluate the structural resistances conveniently in the structures from construction phase to maintenance stage.

Forensic Engineering Study on the Explosion Accident Investigation of the Centrifugal Casting Machine Using ADINA FSI (ADINA FSI를 활용한 원심주조기 폭발사고 원인 규명에 관한 법공학적 연구)

  • Kim, Eui-Soo;Kim, Jong-Hyuk;Kim, Moo-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.27-33
    • /
    • 2011
  • Forensic Engineering is the area covering the investigation of products, structures that fail to perform or do not function as intended, causing personal injury or damage to property. To investigate explosion accident of the centrifugal casting machine in terms of the forensic engineering, in this paper, the computing simulation using ADINA FSI has performed to investigate that the effect of the Check-Pin fracture by the flow phenomena and molten metal weight and the mechanical properties test of the accident Check-Pin has performed using the instrumented indentation technique. Through these studies, the safety accident that may occur in centrifugal casting machine can be minimized by performing specialized and systematic investigation of the accident cause in terms of the forensic engineering.

Determination of Mechanical Properties of Galvanized Steel Sheets Using Instrumented Indentation Technique and Finite Element Analysis (계장화 압입시험 및 유한요소해석을 이용한 아연도금강판의 기계적 물성 추정)

  • Jin, Ji-Won;Kwak, Sung-Jong;Kim, Tae-Seong;Noh, Ki-Han;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.529-535
    • /
    • 2012
  • This paper deals with the determination of mechanical properties of various galvanized steel sheets that are used for fabricating automobile bodies; the instrumented indentation technique and finite element analysis were used for the determination. First, tensile tests were conducted to obtain the true stress-true strain curves of galvanized steel sheets with various thicknesses. Load-deformation curves were then obtained by using the instrumented indentation testing machine, and they were compared with load-deformation curves obtained by finite element analysis. Further, true stress-true strain curves were obtained at the optimal observation point by finite element analysis.

Influence of Indenter Tip Geometry and Poisson's Ratio on Load-Displacement Curve in Instrumented Indentation Test (계장화 압입시험의 하중-변위 곡선에 미치는 선단 형상 및 푸아송비의 영향)

  • Lee, Jin Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.943-951
    • /
    • 2014
  • The tip geometries of the pyramidal and conical indenters used for micro/nano-indentation tests are not sharp. They are inevitably rounded because of their manufacturability and wear. In many indentation studies, the tip geometries of the pyramidal indenters are simply assumed to be spherical, and the theoretical solution for spherical indentation is simply applied to the geometry at a shallow indentation depth. This assumption, however, has two problems. First, the accuracy of the theoretical solution depends on the material properties and indenter shape. Second, the actual shapes of pyramidal indenter tips are not perfectly spherical. Hence, we consider the effects of these two problems on indentation tests via finite element analysis. We first show the relationship between the Poisson's ratio and load-displacement curve for spherical indentation, and suggest improved solutions. Then, using a possible geometry for a Berkovich indenter tip, we analyze the characteristics of the load-displacement curve with respect to the indentation depth.

A Characteristic Study of Weld Residual Stress Measurement for AISI 304 Plate Surface Weld Specimen (AISI 304 표면용접평판 시편의 용접잔류응력 측정 특성 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Keun;Song, Taek-Ho;Choi, Hyun-Sun;Rho, Dong-Seong;Park, Jae-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.61-66
    • /
    • 2008
  • This study is performed to compare characteristics of various measurement technique for weld residual stress. AISI 304 plate with one path weld on the surface was manufactured for this study. Hole drilling method, X-ray diffraction method and instrumented indentation method were used to measure the residual stress before and after welding. All the results were compared and analyzed.

  • PDF