• 제목/요약/키워드: Instrument Error

검색결과 277건 처리시간 0.031초

Compositional analysis by NIRS diode array instrumentation on forage harvesters

  • Andreashaeusler, Michael Rode;Christian, Paul
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1619-1619
    • /
    • 2001
  • Ourwork aims to assess the content of dry matter, protein, cell wall parameters and water soluble carbohydrates in forages without having to handle samples, transport them to a laboratory, dry, grind and chemically analyze them. for this purpose, the concept of fresh forage analysis under field conditions by means of compact integrated NIRS InGaAs-diode array instruments on small plot harvesters is being evaluated for plant breeding trials. This work was performed with the world first commercial experimental forage plot harvester equipped with a NIRS module for the collection, compression, and scanning of forage samples (including automatic referencing and dark current measure ments). It was used for harvesting and analyzing a number of typical forage grass and forage legume plot trials. After NIRS measurements in the field each sample was again analyzed in the laboratory by means of a conventional grating spectrometer equipped with Si-and PbS-detectors. Conventional laboratory analysis of the samples was restricted to dry matter (DM) content by means of oven drying at 105. Routine chemometric procedures were then employed to assess the comparative accuracy and precision of the DM assessments in the spectral range between 950 and 1650nm by the NIRS diode array as well as by the conventional NIRS scanning instrument. The results of this study confirmed that the type of NIRS diode array instrument employed here functioned well even in rugged field operations. further refinements proved to be necessary for optimizing the automatic filling of the sample compartment to adjust for the wide variation in forage material under conditions of extremely low or high harvest yields. The error achieved in calibrating the apparatus for forages of typical DM content proved to be satisfactory (SECV < 1.0). Possibly as a consequence of higher sampling errors, its performance in atypical forages with elevated DM contents was less satisfactory. The error level obtained on the conventional grating NIR spectrometer was similar to that of the diode array instrument for both types of forage.

  • PDF

그레이-레벨 한계 기법을 이용한 자동 시각 굴절력 곡률계의 측정 알고리즘 (A Measurement Algorithm using Gray-level Thresholding in Automatic Refracto-Keratometer)

  • 성원;박종원
    • 정보처리학회논문지B
    • /
    • 제9B권6호
    • /
    • pp.727-734
    • /
    • 2002
  • 최근 시각 관련 측정기 개발에 대한 관심이 높아지고 있다. 이에 본 연구는 자동 시각 굴절력 곡률계의 전자 부문 소프트웨어를 개발하였다. 만약 자동화된 시스템이 광학계로부터 나오는 영상을 이용하여 내부 처리를 거친 후 정확한 시각 측정치를 검사자에게 알려줄 수 있다면 잘못 측정되는 측정 횟수를 크게 줄일 수 있을 것이다. 본 연구는 형태학적 필터링(morphological filtering)과 그레이-레벨의 신호 강조(signal enhance) 기술들을 이용하여 자동 시각 굴절력 측정 시스템에 연동될 측정 알고리즘을 개발하였다. 알고리즘에서는 광학계로부터 도출된 영상으로부터 첫째로 형태학적 필터링 처리를 행한다. 이 과정은 처리가 어려운 원 영상을 좀 더 다루기 쉬운 상태로 바꿔주는 역할을 하게 된다. 둘째는 일차 처리된 영상에 가해주는 그레이 수준 한계 기법을 통한 신호 강조 기법으로서 이는 영상의 그레이 값 분포가 다양함으로 인해서 발생되는 오차를 줄이기 위해서 사용된다. 그리하여 본 전자 부문 소프트웨어는 정확한 측정값 도출이 어려운 시각 영상에 적용되어 효과적으로 오차를 줄임으로써 보다 효율적인 시각 측정을 가능하게 하였다.

부유분진(PM10) 측정기 상태 코드 분석을 통한 자동 품질검사 알고리즘 개선 및 평가 (Improvement and Evaluation of Automatic Quality Check Algorithm for Particulate Matter (PM10) by Analysis of Instrument Status Code)

  • 김미경;박영산;류상범;조정훈
    • 대기
    • /
    • 제29권4호
    • /
    • pp.501-509
    • /
    • 2019
  • Asian Dust is a meteorological phenomenon that sand particles are raised from the arid and semi-arid regions-Taklamakan Desert, Gobi Desert and Inner Mongolia in China-and transported by westerlies and deposited on the surface. Asian dust results in a negative effect on human health as well as environmental, social and economic aspects. For monitoring of Asian Dust, Korea Meteorological Administration operates 29 stations using a continuous ambient particulate monitor. Kim et al. (2016) developed an automatic quality check (AQC) algorithm for objective and systematic quality check of observed PM10 concentration and evaluated AQC with results of a manual quality check (MQC). The results showed the AQC algorithm could detect abnormal observations efficiently but it also presented a large number of false alarms which result from valid error check. To complement the deficiency of AQC and to develop an AQC system which can be applied in real-time, AQC has been modulated. Based on the analysis of instrument status codes, valid error check process was revised and 6 status codes were further considered as normal. Also, time continuity check and spike check were modified so that posterior data was not referred at inspection time. Two-year observed PM10 concentration data and corresponding MQC results were used to evaluate the modulated AQC compared to the original AQC algorithm. The results showed a false alarm ratio decreased from 0.44 to 0.09 and the accuracy and the probability of detection were conserved well in spite of the exclusion of posterior data at inspection time.

비파괴 시험방법을 이용한 원목 내부결함 예측 및 분류의 계량화(計量化)에 관한 연구 (I) - 원목의 횡단방향을 중심으로 - (Study on Mensurability of Internal Defect Prediction and of Classification of Log by NDE(Non-Destructive Evaluation) (I) - Focused on Cross Direction of Log -)

  • 박헌;강은창;전성진;윤경섭
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.47-54
    • /
    • 1995
  • This study was to measure the properties of logs and classify them by non-destructive methods. The purpose of this experiment was focused at mensurability of logs by non-destructive methods. The non-destructive instrument, Stress-Wave Timer 239A which was made by Metriguard in U.S.A., was used. The stress wave velocities of log's cross direction were measured and compared with three different methods; 1. with hammer, 2. with hammer and D.B.H. meter, 3. with manufactured instrument. Number of used logs were seven logs, which were classified by naked eye into six groups; very severe rot, severe rot, mild rot & knot, mild rot & check, mild rot, sound log, and in diameter were into three groups; large(57.4cm), medium(36~41.2cm), small(28.9cm) log. The results, which were classified by mensurability with non-destructive methods, were followed; 1. The stress wave velocities were very different between rot and sound log. So it meant the possibility of mensurability of logs by non-destructive method even if high standard error. 2. The stress wave velocities decreased with checks more than with rots, which meant the checks affected speeds more. 3. The stress wave velocities increased with knot. 4. The velocities with manufactured instrument showed lower standard error, so more accurate results than other methods. Especially the required labour decreased from 3~4 to 2 persons. 5. Finally, the mensurability showed more accurate results and made the classification of logs scientific.

  • PDF

태양 엄폐법에 의한 연직 오존 분포 도출과 민감도 실험 (RETRIEVAL OF VERTICAL OZONE PROFILE USING SATELLITE SOLAR OCCULTATION METHOD AND TESTS OF ITS SCNSITIVITY)

  • 조희구;윤영준;박재형;이광목;요코다타쓰야
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.119-138
    • /
    • 1998
  • 최근에 인공위성에 의한 대기 중의 미량 기체 관측이 활발하다. 따라서 이들 자료의 처리기법 개발이 매우 중요하다. 그러므로 이 연구에서는 인공위성에 의해 태양 엄폐범(太陽 掩蔽法: Solar Occultation Method)으로 관측한 대기 주연 경로(周緣 經路: limb path)의 접선 고도별 평균 투과율로부터 연직 오존 분포를 도출하고, 온도와 기압 오차의 민감도 오차의 민감도 실험을 하고자 한다. 여기에서 서울의 반전(Umkehr)관측에 의하여 구한 연평균 연직 오존분포로 계산된 평균 투과율을 인공위성으로부터 관측된 평균 투과율로 가정하였다. HALOE SIDS (Hallogen Occultation Experiment Simulated Instrument Data Set)의 연직 오존 자료를 초기치로 하고 온도와 기압의 연직 분포를 입력값으로 하여 대기 평균 투과율을 파장 $9.89{\mu}m$$10.02{\mu}m$ 사이에서 접선고도별로 계산했다. 관측 평균 투과율에 대하여 계산한 평균 투과율로부터 오존 분포 법으로 접선고도 10km에서 50km까지 매 3km마다 오존 농도를 도출하였다. 도출된 서울의 연직 오존 분포를 관측한 연직 오존 분포와 비교하였다. 이 결과에 의하면 전 고도에 걸쳐서 서울의 연직 오존 분포가 오차가 거의 없을 정도로 정확하게 도출되었다. 그리고 민감도 실험을 위하여 관측 평균 투과율에$\pm0.001$, 각 층의 온도에 $\pm3K$, 그리고 각 층에 기압의 $\pm3\%$의 강제 오차를 각각 주었다. 이들 각 오차는 ADEOS/ILAS 관측 오차에 근거하였다. 이들의 결과는 투과율 오차에 대하여 -6.5%에서 +6.9%, 온도 오차에 대하여 -9.5%에서 +10.5, 그리고 기압 오차에 대하여 -5.1%에서 +5.4%의 고도별 오존 량 오차가 각각 나타났다. 태양 엄폐 법에 의해 비교적 정확한 연직 오존 분포를 도출할 수 있었다. 이 도출 과정에서 특히 온도 관측이 중요함을 알 수 있었다.

  • PDF

Astronomical Instruments with Two Scales Drawn on Their Common Circumference of Rings in the Joseon Dynasty

  • Mihn, Byeong-Hee;Choi, Goeun;Lee, Yong Sam
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권1호
    • /
    • pp.45-54
    • /
    • 2017
  • This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui) and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui) are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi) of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon's astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring's size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings' diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong) refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions) in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants), we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS).

일사계 교정기법에 관한 연구 (A Study on the Calibration Techniques for Thermopile Pyranometer)

  • 조덕기;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.161-166
    • /
    • 2008
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF

머시닝 센터에서 하중이 위치결정정밀도에 미치는 영향 (The effect on the position precision by load in M.C.)

  • 이승수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.143-147
    • /
    • 1998
  • As the accuracy of manufactured goods needed high-accuracy processing has made the efficiency of NC and measurment technology develop, the innovation of machine tools has influence the development of the semi-conductor and optical technology. We can mention that a traction role of the acceleration for the development like that depends on the development of the measurement technics - Stylus instrument method, STM, SEM, Laser interferometer method - which are used for measuring the movement accuracy of machine tools. The movement error factors in movement accuracy are expressed as yaw, roll, and pitch etc. Machining center has 21 movement error factors including of 3 axies joint errors because that has 3 axies and has been measured as the standard of the unloaded condition until now inspite of getting static, dynamic, and servo-gain errors in the case of expending the error range. Therefore, this study tries to measure position accuracy according to loading on the X-Y table of the machining center.

  • PDF

철심 코어형 전자식 전압 변성기 개발 (Development of the iron-cored electronic voltage transformer)

  • 강용철;박종민;장성일;김연희;최정환;김용균;송인준;안용호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.138-139
    • /
    • 2008
  • An iron-cored voltage transformer(VT) is usually used to obtain the standard low voltage signal for protection and measurement. Generally, the iron-cored transformers have errors due to the hysteresis characteristics of the iron-core. An error compensating algorithm for iron-cored instrument transformer can improve the accuracy of conventional voltage transformers. This paper describes the iron-cored electronic voltage transformer having the error compensating algorithm. The innovative product composes an iron-cored VT and an intelligent electronic device(IED) having the error compensating algorithm. The test results of the iron-cored electronic voltage transformers in Korea Electro-technology Research Institute(KERI) are presented.

  • PDF

일사계 교정을 위한 불확실성 분석에 관한 연구 (A Study on the Uncertainty Analysis for Thermopile Pyranometer Calibrations)

  • 조덕기;전일수;전명석;강용혁;오정무
    • 한국태양에너지학회 논문집
    • /
    • 제21권3호
    • /
    • pp.25-32
    • /
    • 2001
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF