• Title/Summary/Keyword: Instantaneous reactive power

Search Result 103, Processing Time 0.025 seconds

Comparison of Two Reactive Power Definitions in DFIG Wind Power System under Grid Unbalanced Condition

  • Ha, Daesu;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.213-214
    • /
    • 2014
  • This paper compares two instantaneous reactive power definitions in DFIG wind turbine with a back-to-back three-level neutral-point clamped voltage source converter under unbalanced grid conditions. In general, conventional definition of instantaneous reactive power is obtained by taking an imaginary component of complex power. The other definition of instantaneous reactive power can be developed based on a set of voltages lagging the grid input voltages by 90 degree. A complex quantity referred as a quadrature complex power is defined. Proposed definition of instantaneous reactive power is derived by taking a real component of quadrature complex power. The characteristics of two instantaneous reactive power definitions are compared using the ripple-free stator active power control algorithm in DFIG. Instantaneous reactive power definition based on quadrature complex power has a simpler current reference calculation control block. Ripple of instantaneous active and reactive power has the same magnitude unlike in conventional definition under grid unbalance. Comparison results of two instantaneous reactive power definitions are verified through simulation.

  • PDF

Instantaneous Reactive Power Compensation Theory Increasing The Control Freedom One Degree Higher (제어 자유도를 한 차원 증가시킨 순시무효전력 보상이론)

  • Kim, Hyo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2481-2483
    • /
    • 1999
  • This paper proposed the p-q-r coordinate system where the instantaneous active power p, and the two instantaneous reactive powers $q_{q}$, $q_{r}$ were defined. The three power components are linearly independent, so the compensation for the two instantaneous reactive powers leads to control the two components of the current space vector. With the theory, the neutral current of a three-phase four-wire system can be eliminated by only compensating the instantaneous reactive power using no energy storage element.

  • PDF

Eliminating the Neutral Current by the Instantaneous Reactive Power Compensation (순시무효전력 보상에 의한 중성선 전류의 제거)

  • Kim, Hyo-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • This paper, proposed the p-q-r coordinate system where the instantaneous active power p, and the two instantaneous reactive powers $q_{q}$, $q_{r}$ were defined. The three power components are linearly independent, so the compensation for the two instantaneous reactive powers leads to control the two components of the current space vector. With the theory, the neutral current of the three-phase four-wire system can be eliminated by only compensating the instantaneous reactive power using no energy storage element.

  • PDF

A Sensorless Control of IPMSM using the Improving Instantaneous Reactive Power Compensator (개선된 순시무효전력 보상기를 이용한 IPMSM의 센서없는 속도제어)

  • La, Jae Du
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1303-1307
    • /
    • 2018
  • A improving sensorless compensator for the IPMSM(Interior Permanent Magnet Synchronous Motor) drive system is proposed. Generally, the motor drive system is required the robust parameter variation and disturbance. The speed estimation methods of the conventional IRP(Instantaneous Reactive Power) compensator is improved by the speed estimation techniques of the current model observer with the proposed instantaneous reactive power compensator. Performance evaluations of the novel speed error compensator and sensorless control system are carried out by the experiments.

A Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시 무효전력을 이용한 매입형 영구자석 동기 전동기의 센서리스 속도제어)

  • Kang Hyoung-Seok;Joung Woo-Taik;Kim Young-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.107-115
    • /
    • 2006
  • In this paper, a new speed sensorless control based on an instantaneous reactive power is proposed for the interior permanent magnet synchronous motor(IPMSM) drives. In proposed algorithm, the current observer estimates the line currents and the estimated speed can be yielded from the voltage equation because the information of speed is included in back EMF. To implement speed sensorless control, the current observer is composed by using the voltage equation of the IPMSM in the stationary reference frame fixed to the stator. The estimated speed of the rotor is composed by using the voltage equation of the IPMSM in the rotating reference frame fixed to the rotor The estimated speeds to minimize the speed error compensated by using the instantaneous reactive power. The instantaneous reactive power is calculated on the rotating reference frame fixed to the rotor. The effectiveness of the preposed algorithm is confirmed by the experiments.

Sensorless Control of a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power in the Field-Weakening Region (약계자 영역에서의 순시무효전력을 이용한 PMSM의 센서리스 제어)

  • Lee Jeong-Hum;Kim Young-Seok;Choi Yang-Kwang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.71-80
    • /
    • 2005
  • This paper presents the position sensorless vector control of a cylindrical permanent magnet synchronous motor(PMSM) in the field weakening region. The position sensorless algorithm using an instantaneous reactive power of the PMSM is proposed. An instantaneous reactive power can be obtained from the vector product of rotor currents and back emf of the PMSM. Back emf includes the information of rotor speed. So the estimated speed can be yielded from the voltage equation of the PMSM. In other words, the estimated speed is compensated by using an instantaneous reactive power. To extend the speed range of the PMSM in the constant horsepower region, the field weakening control is applied. The proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of the proposed algorithm is verified by the experimental results.

Eliminating the Neutral Current by the Power Compensator without using Energy Storage Elements (에너지저장요소를 사용하지 않는 전력보상기에 의한 중성선 전류의 제거)

  • Kim, Hyo-Seong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.6
    • /
    • pp.330-335
    • /
    • 1999
  • This paper proposed the p-q-r coordinate system where the instantaneous active power p, and the two instantaneous reactive powers qq, qr were defined. The three power components are linearly independent, so the compensation for the two instantaneous reactive powers leads to control the two components of the current space vector. With the theory, the neutral current of a three-phase four-wire system can be eliminated by only compensating the instantaneous reactive power using no energy storge element.

  • PDF

Instantaneous Reactive Power Compensator using Current Controlled PWM Converter (전류제어형 PWM 컨버터에 의한 순시 무효전력 보상장치)

  • 최재호;김상훈;박민호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.7
    • /
    • pp.539-548
    • /
    • 1989
  • This paper describes an instantaneous reactive power compensator aimed at the compensation of reactive power and current harmonics of a thyristor load. A new definition of the instantaneous reactive power consisting of both displacement of fundamental current and harmonic distortion current is proposed and the physical meaning is investigated from the viewpoint of an instantaneous power flow. The instantaneous reactive power is calculated from the feedback of instantaneous voltage, current and is compensated by the current controlled PWM converter connected in parallel with the load. The PWM converter operates as a high performance current control scheme, because adopts the excellent current controlled PWM technique based on the current deviation vector. Both simulation and experimental results show good compensating performances in steady and transient state.

The Generalized Instantaneous Power Theory Using Mapping Matrices (맵핑 매트릭스를 사용한 일반화 순시전력 이론)

  • Kim, Hyo-Sung;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1930-1932
    • /
    • 1997
  • Instantaneous active/reactive powers are defined in three phase four wire systems. The definition can be generally applicable to any source conditions and load conditions including nonlinear circuits. The zero-sequence power resulted from the zero-sequence voltage and zero-sequence current between two sub-systems affects both to the instantaneous active and reactive powers. The zero-sequence current can be controlled by compensation of the reactive power without power storage elements.

  • PDF

Islanding Detection for a Micro-Grid based on the Instantaneous Active and Reactive Powers in the Time Domain (시간영역에서 순시 유효/무효전력을 이용한 마이크로그리드의 단독운전 판단)

  • Lee, Young-Gui;Kim, Yeon-Hee;Zheng, Tai-Ying;Kim, Tae-Hyun;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.22-27
    • /
    • 2012
  • Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control and protection of the MG depend on an operating mode i.e., an interconnected mode or an islanding mode. When islanding occurs, the frequency of the point of common coupling (PCC) is not the nominal frequency during the transient state owing to the frequency rise or drop of generators in the MG. Thus, the active and reactive power calculated by the frequency domain based method such as Fourier Transform might contain some errors. This paper proposes an islanding detection algorithm for the MG based on the instantaneous active and reactive powers delivered to the dedicated line in the time domain. During the islanding mode, the instantaneous active and reactive powers delivered to the dedicated line are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. In this paper, the instantaneous active and reactive powers are calculated in the time domain and used to detect islanding. The performance of the proposed algorithm is verified under various scenarios including islanding conditions, fault conditions and load variation using the PSCAD/EMTDC simulator. The results indicate that the algorithm successfully detects islanding for the MG.