• Title/Summary/Keyword: Instantaneous Amplitude

Search Result 95, Processing Time 0.024 seconds

Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform

  • Wang, Zuo-Cai;Geng, Dong;Ren, Wei-Xin;Chen, Gen-Da;Zhang, Guang-Feng
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • This paper proposes an analytical mode decomposition (AMD) and Hilbert transform method for structural nonlinearity quantification and damage detection under earthquake loads. The measured structural response is first decomposed into several intrinsic mode functions (IMF) using the proposed AMD method. Each IMF is an amplitude modulated-frequency modulated signal with narrow frequency bandwidth. Then, the instantaneous frequencies of the decomposed IMF can be defined with Hilbert transform. However, for a nonlinear structure, the defined instantaneous frequencies from the decomposed IMF are not equal to the instantaneous frequencies of the structure itself. The theoretical derivation in this paper indicates that the instantaneous frequency of the decomposed measured response includes a slowly-varying part which represents the instantaneous frequency of the structure and rapidly-varying part for a nonlinear structure subjected to earthquake excitations. To eliminate the rapidly-varying part effects, the instantaneous frequency is integrated over time duration. Then the degree of nonlinearity index, which represents the damage severity of structure, is defined based on the integrated instantaneous frequency in this paper. A one-story hysteretic nonlinear structure with various earthquake excitations are simulated as numerical examples and the degree of nonlinearity index is obtained. Finally, the degree of nonlinearity index is estimated from the experimental data of a seven-story building under four earthquake excitations. The index values for the building subjected to a low intensity earthquake excitation, two medium intensity earthquake excitations, and a large intensity earthquake excitation are calculated as 12.8%, 23.0%, 23.2%, and 39.5%, respectively.

Structural time-varying damage detection using synchrosqueezing wavelet transform

  • Liu, Jing-Liang;Wang, Zuo-Cai;Ren, Wei-Xin;Li, Xing-Xin
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.119-133
    • /
    • 2015
  • This paper proposed a structural time-varying damage detection method by using synchrosqueezing wavelet transform. The instantaneous frequencies of a structure with time-varying damage are first extracted using the synchrosqueezing wavelet transform. Since the proposed synchrosqueezing wavelet transform is invertible, thus each individual component can be reconstructed and the modal participation factor ratio can be extracted based on the amplitude of the analytical signals of the reconstructed individual components. Then, the new time-varying damage index is defined based on the extracted instantaneous frequencies and modal participation factor ratio. Both free and forced vibrations of a classical Duffing nonlinear system and a simply supported beam structure with abrupt and linear time-varying damage are simulated. The proposed synchrosqueezing wavelet transform method can successfully extract the instantaneous frequencies of the damaged structures under free vibration or vibration due to earthquake excitation. The results also show that the defined time-varying damage index can effectively track structural time-varying damage.

Evaluation of Van Khan Tooril's castle, an archaeological site in Mongolia, by Ground Penetrating Radar (GPR을 이용한 몽고 유적지 반 칸 투리일의 성 (Van Khan Tooril's castle)의 평가)

  • Khuut, Tseedulam;Sato, Motoyuki
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.69-76
    • /
    • 2009
  • We report an implementation of the Ground Penetrating Radar (GPR) survey at a site that corresponds to a ruined castle. The objective of the survey was to characterise buried archaeological structures such as walls and tiles in Van Khan Tooril's Ruin, Mongolia, by 2D and 3D GPR techniques. GPR datasets were acquired in an area 10mby 9 m, with 10 cm line spacing. Two datasets were collected, using GPR with 500MHz and 800MHz frequency antennas. In this paper, we report the use of instantaneous parameters to detect archaeological targets such as tile, brick, and masonry by polarimetric GPR. Radar polarimetry is an advanced technology for extraction of target scattering characteristics. It gives us much more information about the size, shape, orientation, and surface condition of radar targets. We focused our interpretation on the strongest reflections. The image is enhanced by the use of instantaneous parameters. Judging by the shape and the width of the reflections, it is clear that moderate to high intensity response in instantaneous amplitude corresponds to brick and tiles. The instantaneous phase map gave information about the location of the targets, which appeared as discontinuities in the signal. In order to increase our ability to interpret these archaeological targets, we compared the GPR datasets acquired in two orthogonal survey directions. A good correlation is observed for the alignments of reflections when we compare the two datasets. However, more reflections appear in the north-south survey direction than in the west-east direction. This is due to the electric field orientation, which is in the horizontal plane for north-south survey directions and the horizontally polarised component of the backscattered high energy is recorded.

HHT method for system identification and damage detection: an experimental study

  • Zhou, Lily L.;Yan, Gang
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.141-154
    • /
    • 2006
  • Recently, the Hilbert-Huang transform (HHT) has gained considerable attention as a novel technique of signal processing, which shows promise for the system identification and damage detection of structures. This study investigates the effectiveness and accuracy of the HHT method for the system identification and damage detection of structures through a series of experiments. A multi-degree-of-freedom (MDOF) structural model has been constructed with modular members, and the columns of the model can be replaced or removed to simulate damages at different locations with different severities. The measured response data of the structure due to an impulse loading is first decomposed into modal responses using the empirical mode decomposition (EMD) approach with a band-pass filter technique. Then, the Hilbert transform is subsequently applied to each modal response to obtain the instantaneous amplitude and phase angle time histories. A linear least-square fit procedure is used to identify the natural frequencies and damping ratios from the instantaneous amplitude and phase angle for each modal response. When the responses at all degrees of freedom are measured, the mode shape and the physical mass, damping and stiffness matrices of the structure can be determined. Based on a comparison of the stiffness of each story unit prior to and after the damage, the damage locations and severities can be identified. Experimental results demonstrate that the HHT method yields quite accurate results for engineering applications, providing a promising tool for structural health monitoring.

Heat Transfer from a Sphere in Fluctuating Flow (맥동류에 놓인 구로부터의 열전달)

  • Kwon Young-Pil;Lee Kye-Cheul
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.185-193
    • /
    • 1987
  • The heat transfer characteristics from a solid sphere in a fluctuating air flow is simulated numerically in the range of the Reynolds numbers, $1\;{\leqslant}\;Re\;{\leqslant}\;40.$ Such a situation may be encountered in forced convection from a heated spherical particle in a sound field or oscillat-ing flow. The amplitude and phase delay in the heat transfer response to the flow oscillation are computed for a small amplitude flow. The instantaneous response of heat transfer is simulated for the large amplitude oscillation and compared with the quasi-steady response. The effect of the oscillation on the time - mean value in the local and overall heat transfer rate is discussed along with the change in the flow .field.

  • PDF

Instantaneous Voltage Sag Corrector in Distribution Line Using Series Compensator (배전계통에서의 직렬보상을 이용한 순시전압강하 보상기)

  • Lee, Sang-Hoon;Choi, Jae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • In this paper, a VSC(Voltage Sag Corrector) is discussed for the purpose of power quality enhancement. A fast detecting technique of voltage sag is accomplished through the detection of instantaneous value on synchronous reference frame. A robust characteristic against the noise is available by inserting the first order low pass filter in the detection circuit. The formula and the filter design process is described properly with the mathematical equations. Because the VSC system supply the active power to load, it is required to design the proper size of the energy storage system, In this paper, the capacitor bank is used as an energy storage system, and the size of the capacitor is designed from the point of view of input/output energy as the output power rating and the amplitude and duration time of the voltage sag. The simulation is accomplished by PSCAD/EMTDC.

  • PDF

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance

  • Han, Daesu;Park, Yonggyun;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.246-247
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power system under unbalanced grid conditions. Control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. Combination of these two control algorithms depending on the operating requirements and depth of grid unbalance presents most optimized performance factors under the generalized unbalanced operating conditions leading to high performance DFIG wind turbine system. The proposed control algorithms are verified through transient response in the simulation.

  • PDF

Rotor position detection of bifilar-wound hybrid stepping motors by phase current measurement (상전류 측정에 의한 복권형 하이브리드 스테핑 전동기의 회전자 위치 검출)

  • Kim, Kyu-Hui;You, Jeong-Bong;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.619-625
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by modeling the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. We show that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF

A visual investigation of non-premixed flame behavior under acoustic excitation (음향 가진 하에서 비예혼합 화염거동에 관한 가시화 연구)

  • Lee, Kee-Man;Oh, Sai-Kee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.871-877
    • /
    • 2001
  • Experimental study was conducted to investigate the effects of axial forcing on the flame structures near the nozzle exit of non-premixed flame. The most notable observation is that the direction of vortical motions is changed at some ranges, according to the increase of excitation amplitude. Especially, the elongation flame and the phenomenon of In-burning are always occurred when the vortical motion turnabout. In an analysis of the flame/flow visualization by means of direct photography and RMS technique, a plausible explanation can be made that above phenomena are related only to the amplitude of phase average velocity between the instantaneous velocity elements of excited flow.

  • PDF

An Applicability of Teager Energy Operator and Energy Separation Algorithm for Waveform Distortion Analysis : Harmonics, Inter-harmonics and Frequency Variation

  • Cho, Soo-Hwan;Hur, Jin;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1210-1216
    • /
    • 2014
  • This paper deals with an application of Teager Energy Operator (TEO) and Energy Separation Algorithm(ESA) to detect and determine various voltage waveform distortions like harmonics, inter-harmonics and frequency variation. Because the TEO and DESA algorithm was initially proposed for speech or communication analysis, its applications are limited to some types of waveform in the power quality analysis area. For example, an undistorted voltage signal is similar with a pure sinusoid. A voltage fluctuation is very similar with an amplitude-modulated signal, from the viewpoint of signal theory. And a continuous frequency variation is similar with a frequency-modulated signal, which is also known as a chirp signal. This paper is written to show that the TEO and DESA algorithm can be used for detecting occurrences of the representative waveform distortions and determining their instantaneous information of amplitude and frequency.