• 제목/요약/키워드: Instance-based learning

검색결과 133건 처리시간 0.033초

네트워크 침입 탐지를 위한 사례 기반 학습 방법 (Instance-Based Learning for Intrusion Detection)

  • 박미영;이도헌;원용관
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.172-174
    • /
    • 2001
  • 침입 탐지란 컴퓨터와 네트워크 지원에 대한 유해한 침입 행동을 식별하고 대응하는 과정이다. 점차적으로 시스템에 대한 침입 유형들이 복잡해지고 전문적으로 이루어지면서 빠르고 정확한 대응을 할 수 있는 시스템이 요구되고 있다. 이에 따라, 대용량의 데이터를 지능적으로 분석하여 의미있는 정보를 추출하는 데이터 마이닝 기법을 적용함으로써 지능적이고 자동화된 탐지를 수행할 수 있도록 한다. 본 논문에서는 학습 데이터를 각각 사례로 데이터베이스에 저장한 후, 실험 데이터가 입려되면 가장 가까운 거리에 있는 학습 데이터의 크래스로 분류하는 사례 기반 학습을 이용하여 빠르게 사용자의 이상 행위에 대해 판정한다. 그러나 많은 사례로 인해 기억 공간이 늘어날 경우 시스템의 성능이 저하되는 문제점을 고려하여, 빈발 에피소드 알고리즘을 수행하여 발견한 순차 패턴을 사례화하여 정상 행위 프로파이로 사용하는 순차패턴에 대한 사례 기반 학습을 제안한다. 이로써, 시스템 성능의 저하율을 낮추고 빠르며 정확하게 지능적인 침입 탐지를 수행할 수 있다.

  • PDF

CAM에서의 사례의존규칙을 이용한 실시간 일정계획 (Real Time Scheduling for Computer-Aided Manufacturing ( CAM ) Systems with Instance-Based Rules)

  • 이종태
    • 대한산업공학회지
    • /
    • 제17권2호
    • /
    • pp.63-74
    • /
    • 1991
  • An expert scheduling system on real time basis for computer-aided manufacturing systems has been developed. In developing expert scheduling system, the most time-consuming job is to obtain rules from expert schedulers. An efficient process of obtaining rules directly form the schedules produced by expert schedulers is proposed. By the process, a set of complete and minimal set of rules is obtained. During a real time scheduling, when given information on possible values of elements, the rules produce possible values of decision elements, where logical explanations of the result may be offered in terms of chaining rules. The learning and scheduling processes have been simulated with an automated manufacturing line engaged in the production of circuit boards.

  • PDF

HigherHRNet 기반의 발추정 기법을 통한 횡단보도 보행자 인식 (Pedestrian Recognition of Crosswalks Using Foot Estimation Techniques Based on HigherHRNet)

  • 정경민;한주훈;이현
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.171-177
    • /
    • 2021
  • It is difficult to accurately extract features of pedestrian because the pedestrian is photographed at a crosswalk using a camera positioned higher than the pedestrian. In addition, it is more difficult to extract features when a part of the pedestrian's body is covered by an umbrella or parasol or when the pedestrian is holding an object. Representative methods to solve this problem include Object Detection, Instance Segmentation, and Pose Estimation. Among them, this study intends to use the Pose Estimation method. In particular, we intend to increase the recognition rate of pedestrians in crosswalks by maintaining the image resolution through HigherHRNet and applying the foot estimation technique. Finally, we show the superiority of the proposed method by applying and analyzing several data sets covered by body parts to the existing method and the proposed method.

Industrial Process Monitoring and Fault Diagnosis Based on Temporal Attention Augmented Deep Network

  • Mu, Ke;Luo, Lin;Wang, Qiao;Mao, Fushun
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.242-252
    • /
    • 2021
  • Following the intuition that the local information in time instances is hardly incorporated into the posterior sequence in long short-term memory (LSTM), this paper proposes an attention augmented mechanism for fault diagnosis of the complex chemical process data. Unlike conventional fault diagnosis and classification methods, an attention mechanism layer architecture is introduced to detect and focus on local temporal information. The augmented deep network results preserve each local instance's importance and contribution and allow the interpretable feature representation and classification simultaneously. The comprehensive comparative analyses demonstrate that the developed model has a high-quality fault classification rate of 95.49%, on average. The results are comparable to those obtained using various other techniques for the Tennessee Eastman benchmark process.

DRL based Dynamic Service Mobility for Marginal Downtime in Multi-access Edge Computing

  • ;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.114-116
    • /
    • 2022
  • The advent of the Multi-access Edge Computing (MEC) paradigm allows mobile users to offload resource-intensive and delay-stringent services to nearby servers, thereby significantly enhancing the quality of experience. Due to erratic roaming of mobile users in the network environment, maintaining maximum quality of experience becomes challenging as they move farther away from the serving edge server, particularly due to the increased latency resulting from the extended distance. The services could be migrated, under policies obtained using Deep Reinforcement Learning (DRL) techniques, to an optimal edge server, however, this operation incurs significant costs in terms of service downtime, thereby adversely affecting service quality of experience. Thus, this study addresses the service mobility problem of deciding whether to migrate and where to migrate the service instance for maximized migration benefits and marginal service downtime.

Injection of Cultural-based Subjects into Stable Diffusion Image Generative Model

  • Amirah Alharbi;Reem Alluhibi;Maryam Saif;Nada Altalhi;Yara Alharthi
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.1-14
    • /
    • 2024
  • While text-to-image models have made remarkable progress in image synthesis, certain models, particularly generative diffusion models, have exhibited a noticeable bias to- wards generating images related to the culture of some developing countries. This paper introduces an empirical investigation aimed at mitigating the bias of image generative model. We achieve this by incorporating symbols representing Saudi culture into a stable diffusion model using the Dreambooth technique. CLIP score metric is used to assess the outcomes in this study. This paper also explores the impact of varying parameters for instance the quantity of training images and the learning rate. The findings reveal a substantial reduction in bias-related concerns and propose an innovative metric for evaluating cultural relevance.

Stream-based Biomedical Classification Algorithms for Analyzing Biosignals

  • Fong, Simon;Hang, Yang;Mohammed, Sabah;Fiaidhi, Jinan
    • Journal of Information Processing Systems
    • /
    • 제7권4호
    • /
    • pp.717-732
    • /
    • 2011
  • Classification in biomedical applications is an important task that predicts or classifies an outcome based on a given set of input variables such as diagnostic tests or the symptoms of a patient. Traditionally the classification algorithms would have to digest a stationary set of historical data in order to train up a decision-tree model and the learned model could then be used for testing new samples. However, a new breed of classification called stream-based classification can handle continuous data streams, which are ever evolving, unbound, and unstructured, for instance--biosignal live feeds. These emerging algorithms can potentially be used for real-time classification over biosignal data streams like EEG and ECG, etc. This paper presents a pioneer effort that studies the feasibility of classification algorithms for analyzing biosignals in the forms of infinite data streams. First, a performance comparison is made between traditional and stream-based classification. The results show that accuracy declines intermittently for traditional classification due to the requirement of model re-learning as new data arrives. Second, we show by a simulation that biosignal data streams can be processed with a satisfactory level of performance in terms of accuracy, memory requirement, and speed, by using a collection of stream-mining algorithms called Optimized Very Fast Decision Trees. The algorithms can effectively serve as a corner-stone technology for real-time classification in future biomedical applications.

통합 이미지 처리 기술을 이용한 콘크리트 교량 균열 탐지 및 매핑 (Crack Inspection and Mapping of Concrete Bridges using Integrated Image Processing Techniques)

  • 김병현;조수진
    • 한국안전학회지
    • /
    • 제36권1호
    • /
    • pp.18-25
    • /
    • 2021
  • In many developed countries, such as South Korea, efficiently maintaining the aging infrastructures is an important issue. Currently, inspectors visually inspect the infrastructure for maintenance needs, but this method is inefficient due to its high costs, long logistic times, and hazards to the inspectors. Thus, in this paper, a novel crack inspection approach for concrete bridges is proposed using integrated image processing techniques. The proposed approach consists of four steps: (1) training a deep learning model to automatically detect cracks on concrete bridges, (2) acquiring in-situ images using a drone, (3) generating orthomosaic images based on 3D modeling, and (4) detecting cracks on the orthmosaic image using the trained deep learning model. Cascade Mask R-CNN, a state-of-the-art instance segmentation deep learning model, was trained with 3235 crack images that included 2415 hard negative images. We selected the Tancheon overpass, located in Seoul, South Korea, as a testbed for the proposed approach, and we captured images of pier 34-37 and slab 34-36 using a commercial drone. Agisoft Metashape was utilized as a 3D model generation program to generate an orthomosaic of the captured images. We applied the proposed approach to four orthomosaic images that displayed the front, back, left, and right sides of pier 37. Using pixel-level precision referencing visual inspection of the captured images, we evaluated the trained Cascade Mask R-CNN's crack detection performance. At the coping of the front side of pier 37, the model obtained its best precision: 94.34%. It achieved an average precision of 72.93% for the orthomosaics of the four sides of the pier. The test results show that this proposed approach for crack detection can be a suitable alternative to the conventional visual inspection method.

Water level forecasting for extended lead times using preprocessed data with variational mode decomposition: A case study in Bangladesh

  • Shabbir Ahmed Osmani;Roya Narimani;Hoyoung Cha;Changhyun Jun;Md Asaduzzaman Sayef
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.179-179
    • /
    • 2023
  • This study suggests a new approach of water level forecasting for extended lead times using original data preprocessing with variational mode decomposition (VMD). Here, two machine learning algorithms including light gradient boosting machine (LGBM) and random forest (RF) were considered to incorporate extended lead times (i.e., 5, 10, 15, 20, 25, 30, 40, and 50 days) forecasting of water levels. At first, the original data at two water level stations (i.e., SW173 and SW269 in Bangladesh) and their decomposed data from VMD were prepared on antecedent lag times to analyze in the datasets of different lead times. Mean absolute error (MAE), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the machine learning models in water level forecasting. As results, it represents that the errors were minimized when the decomposed datasets were considered to predict water levels, rather than the use of original data standalone. It was also noted that LGBM produced lower MAE, RMSE, and MSE values than RF, indicating better performance. For instance, at the SW173 station, LGBM outperformed RF in both decomposed and original data with MAE values of 0.511 and 1.566, compared to RF's MAE values of 0.719 and 1.644, respectively, in a 30-day lead time. The models' performance decreased with increasing lead time, as per the study findings. In summary, preprocessing original data and utilizing machine learning models with decomposed techniques have shown promising results for water level forecasting in higher lead times. It is expected that the approach of this study can assist water management authorities in taking precautionary measures based on forecasted water levels, which is crucial for sustainable water resource utilization.

  • PDF

An Experimental Comparison of CNN-based Deep Learning Algorithms for Recognition of Beauty-related Skin Disease

  • Bae, Chang-Hui;Cho, Won-Young;Kim, Hyeong-Jun;Ha, Ok-Kyoon
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권12호
    • /
    • pp.25-34
    • /
    • 2020
  • 본 논문에서는 딥러닝 지도학습 알고리즘을 사용한 학습 모델을 대상으로 미용 관련 피부질환 인식의 효과성을 실험적으로 비교한다. 최근 딥러닝 기술을 산업, 교육, 의료 등 다양한 분야에 적용하고 있으며, 의료 분야에서는 중요 피부질환 중 하나인 피부암 식별의 수준을 전문가 수준으로 높인 성과를 보이고 있다. 그러나 아직 피부미용과 관련된 질환에 적용한 사례가 다양하지 못하다. 따라서 딥러닝 기반 이미지 분류에 활용도가 높은 CNN 알고리즘을 비롯하여 ResNet, SE-ResNet을 적용하여 실험적으로 정확도를 비교함으로써 미용 관련 피부질환을 판단하는 효과성을 평가한다. 각 알고리즘을 적용한 학습 모델을 실험한 결과에서 CNN의 경우 평균 71.5%, ResNet은 평균 90.6%, SE-ResNet은 평균 95.3%의 정확도를 보였다. 특히 학습 깊이를 다르게하여 비교한 결과 50개의 계층 구조를 갖는 SE-ResNet-50 모델이 평균 96.2%의 정확도로 미용 관련 피부질환 식별을 위해 가장 효과적인 결과를 보였다. 본 논문의 목적은 피부 미용과 관련된 질환의 판별을 고려하여 효과적인 딥러닝 알고리즘의 학습과 방법을 연구하기 위한 것으로 이를 통해 미용 관련 피부질환 개선을 위한 서비스 개발로 확장할 수 있을 것이다.