• Title/Summary/Keyword: Installation depth

Search Result 368, Processing Time 0.029 seconds

Evaluation of Relative Corrosion Rate depending on Local Location and Installation of Structural Member in Steel Water Gate (강재 수문의 부재 위치 및 설치 방향에 따른 상대 부식속도 평가)

  • Ha, Min-Gyun;Jeong, Young Soo;Park, Seung hun;Ahn, Jin-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.16-24
    • /
    • 2019
  • The corrosion amounts of steel structures can be different depending on their installation condition and height. Thus, their corrosion maintenance should be considered depending on installation conditions of local structural members. In this study, an atmospheric exposure test was conducted to evaluate the corrosion amount and the corrosion rate depending on the installation condition and height of a steel water gate using monitoring steel plates and corrosion environment measuring sensors. The mean corrosion depth was evaluated using the weight loss method and the galvanic corrosion current was measured by corrosion environment measuring sensors. Local corrosion rate of local structural member in steel water gate was estimated using measured mean corrosion depths and galvanic corrosion currents. From this measurement results, the corrosion damage in horizontal member of the cross beam was highly evaluated than those of other structural member as skin plate, etc. The relative difference in the corrosion rate of a local structural member could be highly affected by local corrosion environments of steel water gate members. Therefore, an appropriate maintenance method should be considered for local corrosion damages of local structural members determined by local corrosion environments of a steel water gate.

Research of geothermal analysis and experimental test for Standing Column Well type system (우물관정(SCW: Standing Column Well)형 냉난방 시스템의 지중열 해석과 실증 실험에 관한 연구)

  • Kwon, Iksang;Hong, Gibae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.173-173
    • /
    • 2010
  • This thesis identified basic design elements (Sustainable Yield, Temperature of Groundwater, Depth of Well, Separation Distance between wells) regarding installation of Standing Column Well, Geothermal Heat pump System by dynamic analysis.

  • PDF

Research for geothermal analysis on design of Standing Column Well type system (우물관정(SCW: Standing Column Well)형 지열 냉난방 시스템 설계를 위한 지중열 해석에 관한 연구)

  • Kwon, Ik-Sang;Rhee, Kwon-Joong;Kim, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.576-580
    • /
    • 2009
  • This thesis identified basic design elements(Sustained Yield, Depth of Well, Separation Distance between wells) regarding installation of Standing Column Well, Geothermal Heat pump System by dynamic analysis.

  • PDF

Variation of Hydraulic Characteristics around a Cylindrical Bridge Pier with Circular Collar (원환 설치에 의한 원형교각 주위의 수리특성변화)

  • Jin, Byoung-Ho;Sim, Ou-Bae;Song, Jai-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.147-154
    • /
    • 2003
  • In this study, hydraulic characteristics around bridge piers were analyzed with and without collar through a hydraulic model experiment. The analysis of stage variation in front and back side of pier showed that collar installation did not function as obstacle to the stream flow. Little variation of water level between front and back sides of pier was observed before and after collar installation(0.2cm in front side and 0.1cm in back side of pier). Also, result that analyze velocity variation in front and back side of pier, lateral velocity(u) and transverse(v) before and after collar installation exhibited no alteration in the front and back side of pier. About 16.72% and 15.83% of vertical velocities(w) were reduced for the condition of y/d=0.33 in the front side of pier and y/d=0.67 in the back side of pier, respectively. This experimental results suggest that the collar installation around pier can minimize the local scouring depth by preventing the downflow that cause the pier scour.

Analysis of the Effect of Yellow Carpet Installation according to Driving Behavior with Eye Tracking Data (가상주행실험 기반 운전자 시각행태에 따른 옐로카펫 설치 효과 분석)

  • Sungkab Joo;Dohoon Kim;Hyemin Mun;Homin Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.43-52
    • /
    • 2023
  • Traffic accidents among children have been decreasing after the installation of yellow carpets. However, the explanatory power of the causal relationship between yellow carpet installation and traffic accidents is still insufficient. The yellow carpet effect was analyzed in greater depth using virtual reality (VR) simulation experiments in various situation that could not be evaluated in existing actual vehicle research studies due to difficulties or risks in implementation. A target site where an actual yellow carpet was installed was selected and, implemented into a virtual environment. Subjects were made to, were gaze measurement equipment and ride the simulator. The visual/driving behavior before and after yellow carpet installation was compared, and a t-test analysis was performed for statistical verification. All the results were found to be statistically significant.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

Large Eddy Simulation on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan with the Different Depth of Bellmouth (벨마우스 깊이가 다른 3차원 소형축류홴의 공력특성에 대한 대규모 와 모사)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.19-25
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the aerodynamic performance of three-dimensional small-size axial fan(SSAF) with the different depth of bellmouth. The static pressure coefficients analyzed by LES predict a little bit larger than measurements except stall region regardless of the installation depth between SSAF and bellmouth. Moreover, static pressure efficiencies analyzed by LES show about maximum 30% at the actual operating point ranges, but measurements do not. Therefore, if the blades of conventional SSAF have some more rigidity and complete dynamic balance, the aerodynamic performance of SSAF will be some more improved. In consequence, LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method.

Characteristics of Uplift Capacity of a Embedded Foundation and Soil Type (매입기초와 토질에 따른 인발저항력 특성)

  • Lim, SeongYoon;Kim, YuYoung;Yu, SeokChul;Kim, MyeongHwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.23-30
    • /
    • 2019
  • In this study, we evaluated the applicability of proper embedded depth of fillings by examining the uplift resistance using spiral foundation and top base foundation. As a result of the model test, the maximum uplift resistance increased with the embedded depth. The maximum uplift resistance of each region was found to be 50cm depth. The spiral foundation was 335.14N of Sancheong, 312.32N of Seongju, 403.94N of Wanju, and the top base foundation was 745.06N of Sancheong, 1028.82N of Seongju and 950.76N of Wanju. The yield point after the elastic section in the stress-displacement graph of the top base foundation was calculated as the maximum uplift resistance. For this reason, farmers do not actually use top bases foundation. Therefore, it was considered that the additional load increase due to slip connector will not occur. Model test results show that the maximum uplift resistance increases with the purlinss installed under the ground. Therefore, additional comparative studies through purlins installation will be needed.

Experimental and Field Investigations for the Accuracy of the Frost Depth Indicator with Methylene Blue Solution (실내실험과 현장실험을 통한 Methylene Blue 동결깊이 측정장치 신뢰성 검토에 관한 연구)

  • Kim, Hak Seung;Lee, Jangguen;Kim, Young Seok;Kang, Jae-Mo;Hong, Seung-Seo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.75-79
    • /
    • 2013
  • The frost depth is one of important factors in the design of structures such as roadways, buried pipeline, and foundations. A frost indicator with methylene blue solution has several advantages with respect to installation cost, maintenance, and simple measurement. However, as a geotechnical engineering aspect, the accuracy of the frost indicator has not been proved yet. This paper presents experimental and field investigations of the accuracy of the frost indicator and contour maps of maximum frost depth. The contour maps of maximum frost depth can be applied to design geo-infrastructure in South Korea.

Analyses of Hazard Voltages According to the Buried Depth of Small-sized Model Grounding Electrode (축소형 모델 접지전극의 매설깊이에 따른 위험전압의 분석)

  • Paek, Young-Hwan;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.56-61
    • /
    • 2009
  • This paper presents the ground surface potential profiles and hazard voltages around the metallic structure connected to a small-sized model ground electrode. Because it is very difficult to draw valid conclusions concerning a general grounding problem from actual field data, scale model tests can be used to determine the touch and stop voltages and surface potential profiles around ground electrode. In this work, a hemispherical vessel with a diameter of 1,100[mm] was employed to simulate uniform soil. As a result, the ground surface potential around the ground electrode was significantly raised In particular the ground surface potential at the just upper point of ground rod was higher than other points. When the buried depth of ground rod is increased, the ground surface potential and step voltage were lowered but the touch voltage was elevated.