• Title/Summary/Keyword: Instability theory

Search Result 283, Processing Time 0.026 seconds

FACTS Application for the Voltage Stability with the Analysis of Bifurcation Theory (전압안정도 향상을 위한 FACTS의 적용과 Bifurcation이론 해석)

  • 주기성;김진오
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.394-402
    • /
    • 2000
  • This paper proposes a bifurcation theory method applied for voltage stability analysis and shows the improvement of voltage stability by attaching the FACTS devices in the power system. A power system is generally expressed by a set of equations of highly nonlinear dynamical system which includes system parameters(real or reactive power). Sometimes variation of parameters in the system may result in complication behaviors which give rise to system instability. The addition of FACTS increases the range of voltage stability in the power system. The effect of FACTS which improves voltage stability are illustrated in the case studies by delaying of Unstable Hopf Bifurcation and Saddle Node Bifurcation.

  • PDF

A Prediction of the Relation between the Disc Brake Temperature and the Hot Judder Critical Speed (주행 중 디스크 온도 변화와 열간 저더 임계속도와의 관계 예측)

  • Kim, Jaemin;Lee, Mingyu;Kim, Bumjin;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • In this paper, it was studied how the critical speed which could occur hot judder due to disk temperature. Through the dynamometer experiment, we measured the critical velocity and surface temperature when the hot judder occur on the disk break. Also with the critical velocity theory equation and the temperature change graph of factors which used in the equation, we was induced experiment equation including theory equation and experiment values. And it has compared with the method which approach as linea. From this, we predicted the change of critical speed which could occur hot judder due to disk temperature. In addition, critical speed graph has compared with actual driving speed and disc temperature at a vehicle test. Therefore it was estimate to possibility of arising hot judder.

Equation for Estimating Natural Frequencies of Initially Stressed Rectangular Plates (초기응력을 받는 직사각형판의 고유진동수 산정식 개발)

  • Park, Sung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.150-159
    • /
    • 2014
  • A simplified method for the calculation of buckling and vibrational characteristics of initially stressed rectangular plate and antisymmetric angle-ply laminated plates is presented in this paper using the natural frequencies under unloading state. The equation of motion of rectangular plate with two opposite edges simply supported is investigated on the basis of Rayleigh-Ritz method and Mindlin plate theory with effect of the curvature term. The relationships of the non-dimensional natural frequencies with initial stresses the coeffcients of critical buckling and the boundaries of the dynamic principal instability region can be characterized by the non-dimensional natureal frequencies under unloading state. Numerical examples are presented to verify the simplified equations and to illustrate potential applications of the analysis.

Proton Temperature Anisotropy vs Parallel Beta in the Solar Wind

  • Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.92.2-92.2
    • /
    • 2011
  • In view of the planned NASA's and ESA's Solar Probe Plus and Solar Orbiter missions, respectively, to probe the inner heliosphere and the Sun's corona, it is timely to investigate outstanding problems associated with the solar wind. Among them is the temperature anisotropy problem. As the solar wind expands into the interplanetary space, the density and magnetic field decreases radially, thus leading to temperature anisotropy ($T_{\parallel}{\gg}T_{\perp}$). However, the measured temperature anisotropy can at times be characterized by $T_{\perp}$ > $T_{\parallel}$, while at other times the measured $T_{\parallel}/T_{\perp}$ is much milder than predicted by adiabatic theory. Physical reasons remain poorly understood. This notwithstanding, it is known from plasma physics that for $T_{\perp}$ > $T_{\parallel}$ electromagnetic ion-cyclotron (EMIC) and mirror instabilities are excited, while for $T_{\parallel}$ > $T_{\perp}$, fire-hose instability is excited. By constructing the threshold conditions for various instabilities, one may construct a closure relation that may be useful for modeling the solar wind. In the present paper we discuss theoretical construction of the anisotropy-beta relation by means of quasi-linear theories of these instabilities. The present work complements previous efforts on the basis of linear theory, hybrid simulations, and empirical fits of observations.

  • PDF

Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

  • Keshtegar, Behrooz;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.195-207
    • /
    • 2018
  • First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton's principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.

General Asymptotic Formulation for the Bifurcation Problem of Thin Walled Structures in Contact with Rigid Surfaces

  • Kwon, Young-Joo;Triantafyllidis, N.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.48-56
    • /
    • 2000
  • The bifurcation problem of thin walled structures in contact with rigid surfaces is formulated by adopting the multiple scales asymptotic technique. The general theory developed in this paper is very useful for the bifurcation analysis of waviness instabilities in the sheet metal forming. The formulation is presented in a full Lagrangian formulation. Through this general formulation, the bifurcation functional is derived within an error of O($(E^4)$) (E: shell's thickness parameter). This functional can be used in numerical solutions to sheet metal forming instability problem.

  • PDF

The dynamic stability analysis of guyed masts under random wind loads

  • He, Yan-Li;Chen, Wu-Jun;Dong, Shi-Lin;Wang, Zhao-Min
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.151-164
    • /
    • 2003
  • On the basis of the first Lyapunov stability theory, this paper develops a dynamic stability criterion for elastic structural systems under arbitrary dynamic loads, and shows the stability criterion using energy variation. After the dynamic stability criterion is validated through a classic example, it is used for the dynamic stability investigation of practical guyed masts under random wind loads. The criterion is reliable, simple and of advantage for structures with large number of elements and nodes. The slack guys and internal resonance between guys and mast are two main factors which induces the dynamic instability of guyed masts, at the same time, some dynamic stability characteristics of guyed masts are found.

A fully coupled thermo-poroelastoplasticity analysis of wellbore stability

  • Zhu, Xiaohua;Liu, Weiji;Zheng, Hualin
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.437-454
    • /
    • 2016
  • Wellbore instability problem is one of the main problems that met frequently during drilling, particularly in high temperature, high pressure (HPHT) formations. There are large amount of researches about wellbore stability in HPHT formations, which based on the thermo-poroelastic theory and some achievements were obtained; however, few studies have investigated on the fully coupled thermo-poroelastoplasticity analysis of wellbore stability, especially the analysis of wellbore stability while the filter cake formed. Therefore, it is very necessary to do some work. In this paper, the three-dimensional wellbore stability model which overall considering the effects of fully coupled thermo-poroelastoplasticity and filter cake is established based on the finite element method and Drucker-Prager failure criterion. The distribution of pore pressure, wellbore stress and plastic deformation under the conditions of different mud pressures, times and temperatures have been discussed. The results obtained in this paper can offer a great help on understanding the distribution of pore pressure and wellbore stress of wellbore in the HPHT formation for drilling engineers.

Merits and Limitations of the stereographic projection method for rock slope stability analysis-(Theory and applications with case histories)- (암반사면 안정성 평가를 위한 평사투영 해석법 적용창의 문제점)

  • 이수곤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.376-408
    • /
    • 1991
  • Recently stereographic projection method has widely been adopted in Korea as a simple but effective way of anlalysing the rock slope stability at the preliminary stage of site investigation. In practice, however, not a few cases have been noted where the method. even with the aid of computer programme, was unproperly applied due to lack of experience in the process of collecting geological data, sorting them out and assessing the potential instability of rock block thereform. This paper will briefly describe basic principles of stereographic projection method and present several instances to discuss its merits and limitations when it is applied to the geological conditions of Korea.

  • PDF

Multiscale modeling for compressive strength of concrete columns with circular cross-section

  • Wu, Han-liang;Wang, Yuan-feng
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.865-878
    • /
    • 2015
  • In order to construct a multiscale model for the compressive strength of plain concrete columns with circular cross section subjected to central longitudinal compressive load, a column failure mechanism is proposed based on the theory of internal instability. Based on an energy analysis, the multiscale model is developed to describe the failure process and predict the column's compressive strength. Comparisons of the predicted results with experimental data show that the proposed multiscale model can accurately represent both the compressive strength of the concrete columns with circular cross section, and the effect of column size on its strength.