• 제목/요약/키워드: Instability of solid-liquid interface

검색결과 6건 처리시간 0.025초

VC의 첨가에 따른 Fe-TiC계의 미세조직변화 (Effect of VC Addition on the Microstructural Evolution of Fe-TiC Cermet)

  • 채기웅
    • 한국세라믹학회지
    • /
    • 제36권4호
    • /
    • pp.366-371
    • /
    • 1999
  • The effect of VC addition on the microstructural evolution of Fe-TiC cermet has been investigated. The microstructures of the Fe-TiC varied with the amount of VC addition. The addition of 1wt% VC enhanced the instability of liquid-solid interface ; the dissolving interface showed round shape instead of facetted one which was ascribed to the increase of lattice mismatch between TiC and solid-solution carbide. in the speci-men with 10wt% VC the new set of solid-solution carbide grains of uniform and small size was formed in-side coarse TiC particles by diffusion induced recrystallizatin (DIR). With increasing the heat-treatment time fine recrystallized grains were dispersed homogeneously in the matrix and resulted in the increase in fracture strength.

  • PDF

섭동법을 이용한 만곡 리뷸릿에 관한 이론적 연구 (Perturbation Analysis of a Meandering Rivulet)

  • 김진호;김호영;강병하;이재헌
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1196-1204
    • /
    • 2001
  • The rivulet is a narrow stream of liquid flowing down a solid surface. When the rivulet\`s flow rate exceeds a certain limit, it tends to meander exhibiting the instability of its interface. This analysis performs a perturbation analysis of this meandering rivulet assuming an inviscid flow possessing contact angle hysteresis at the contact line. The analysis reveals that the contact angle hysteresis as well as the velocity difference across the inter-face, strongly induces the instability of the liquid interface. Moreover, when the rivulet veto-city is low, it is predicted that the axisymmetric disturbance amplifies more rapidly than the anti-axisymmetric disturbance, which explains the emergence of the droplet flow at the low velocity regime.

  • PDF

EVALUATION 01 OIL DISPERSION AGENT BY ASSESSMENT 01 COLOR STRENGTH 01 ORGANIC PIGMENT

  • H., Young-Chan;R., Seo-Joon;L., Dong-Wook;H., Soon-Taek
    • 대한화장품학회지
    • /
    • 제24권3호
    • /
    • pp.73-80
    • /
    • 1998
  • This Study was performed to get the suitable oil dispersion agent by assessment of color strength of organic pigment in non-aqueous systems. Organic pigment is used as a color expression material with other body pigments in the make-up products. But occasionally aggregation or agglomeration occurs for the lack of affinity with medium, This function is the cause of disturbing homogeneous dispersion, and then bring about an instability of products. Our study, research of dispersion mechanism between the pigment and oil phase, has been executed to solve this problem, and find a oil dispersion agent having optimum dispersion condition. Generally dispersion is related to between the solid-liquid mutual properties and electrical phenomena associated with solid-liquid interface. This factor is determined to input energy, milling time, optical properties, particle size, rheological properties, etc. Ideal dispersion state is told that coloring primary solid particle is homogeneously dispersed in medium. Good dispersed colorants are strongly and clearly appeared. We are already known that the particle size of organic pigment, chemical properties and viscosity of medium, refractive index. Consequently We determine the affinity of medium and organic pigment by measuring of color strength in the same mechanical condition. UV-VISIBLE RECORDING SPECTRO PHOTOMETER is used for measuring apparatus. We can decided the dispersion level of oil dispersion agent by measuring absorbance of color strength in the visible range that diluted medium for colloid colorant particles.

  • PDF

A Large Slipping Finite Element Model for Geosynthetics Interface Modeling

  • Yi, Chang-Tok
    • 한국지반공학회지:지반
    • /
    • 제12권3호
    • /
    • pp.35-48
    • /
    • 1996
  • 보강토구조물은 흙과 보강재 사이에 큰 변형이 발생하며 보강토구조물의 파괴양상도 보강재의 미끄러짐이나 변형에 의해 지배되며, 때때로 보강재의 재료의 파괴보다는 미끄러짐에 의해 보강토구조물이 파괴되므로 큰변형이 발생하는 흙-보강재의 모델링이 필요하다. 고형 및 액체폐기물 매립장에 쓰이는 라인너 시스템은 매립장의 경사와 쓰레기하중에 의해 큰 변형이 발생하게 된다. 이러한 큰 변형의 문제는 기존의 접촉요소로써 모델링하는데 많은 제약 이 따른다. 본 논문에서는 이러한 흙과 토목섬유보강사이의 큰 만행을 모델링할 수 있는 접촉은소를 제안하였으며, 그 이론과 그 모델의 적용성에 대하여 논하였다.

  • PDF

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

고에너지 전고체 전해질을 위한 나노스케일 이종구조 계면 특성 (Nanoscale Characterization of a Heterostructure Interface Properties for High-Energy All-Solid-State Electrolytes )

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.28-32
    • /
    • 2023
  • Recently, the use of stable lithium nanostructures as substrates and electrodes for secondary batteries can be a fundamental alternative to the development of next-generation system semiconductor devices. However, lithium structures pose safety concerns by severely limiting battery life due to the growth of Li dendrites during rapid charge/discharge cycles. Also, enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against oxide solid electrolytes. For the development of next-generation system semiconductor devices, solid electrolyte nanostructures, which are used in high-density micro-energy storage devices and avoid the instability of liquid electrolytes, can be promising alternatives for next-generation batteries. Nevertheless, poor lithium ion conductivity and structural defects at room temperature have been pointed out as limitations. In this study, a low-dimensional Graphene Oxide (GO) structure was applied to demonstrate stable operation characteristics based on Li+ ion conductivity and excellent electrochemical performance. The low-dimensional structure of GO-based solid electrolytes can provide an important strategy for stable scalable solid-state power system semiconductor applications at room temperature. The device using uncoated bare NCA delivers a low capacity of 89 mA h g-1, while the cell using GO-coated NCA delivers a high capacity of 158 mA h g−1 and a low polarization. A full Li GO-based device was fabricated to demonstrate the practicality of the modified Li structure using the Li-GO heterointerface. This study promises that the lowdimensional structure of Li-GO can be an effective approach for the stabilization of solid-state power system semiconductor architectures.

  • PDF