• 제목/요약/키워드: Instability constant

검색결과 193건 처리시간 0.021초

견관절 Scoring System의 비교연구 (A Comparative Study of the Shoulder Scoring Systems)

  • 태석기;조성구;정영복;진휘재;김종원
    • Clinics in Shoulder and Elbow
    • /
    • 제4권2호
    • /
    • pp.173-180
    • /
    • 2001
  • Aim: To evaluate validity and responsiveness of four shoulder scoring systems. Material and Method: Twenty-five cases of shoulder instability(22 traumatic, 3 non-traumatic) and twenty-three cases of rotator cuff tear(12 small or medium, 10 large or massive) treated surgically were evaluated with the Shoulder Function Score of the University of Pennsylvania(Penn FS), Constant Score, UCLA Shoulder Rating Scale and Simple Shouler Test(SST), preoperatively and at final follow-up. The average follow-up was 16.0 months in instability group and 17.5 months in rotator cuff tear group. Using the SPSS program, Pearson linear correlation coefficiency(PLCC) between the scores were calculated. And to assess the construct validity, PLCC between patients' satisfaction and the scores were also calculated. Responsiveness was measured by the standardized response mean(SRM). Result: In instability group, correlation between the scoring systems was low preoperatively except between Constant and SST, but high after operation. Patients' satisfaction with the scores showed low PLCC preoperativley, but high PLCC postoperatively. SRM was high in PENN and UCLA, but when the satisfaction segment of the score was eliminated from UCLA, the SRM was the lowest. In rotator cuff tear group, there was high correlation between the scores not only preoperatively but postoperatively. And the patients' satisfaction matched well with the scores. SRM was particularly high in UCLA and SST. Even when satisfaction segment was eliminated from UCLA, the SRM was still the highest. Conclusion : Evaluation by the 4 scoring systems investigated in the study showed less consistency in instability than rotator cuff tear in terms of correlation and validity. Responsiveness was generally higher in rotator cuff tear group than in instability group except for Pennsylvania Shoulder Function Score. Therefore it is construed that use of any among the four scoring systems doesn't make difference in evaluation of rotator cuff lesions. However in instability group, care is needed because different result may be obtained according to the selection of a scoring system.

  • PDF

Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude

  • Zheng, Zhoulian;Xu, Yunping;Liu, Changjiang;He, Xiaoting;Song, Weiju
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.401-413
    • /
    • 2011
  • The aerodynamic stability of orthotropic tensioned membrane structures with rectangular plane is theoretically studied under the uniform ideal potential flow. The aerodynamic force acting on the membrane surface is determined by the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics. Then, based on the large amplitude theory and the D'Alembert's principle, the interaction governing equation of wind-structure is established. Under the circumstances of single mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction equation into a system of second order nonlinear differential equation with constant coefficients. Through judging the stability of the system characteristic equation, the critical divergence instability wind velocity is determined. Finally, from different parametric analysis, we can conclude that it has positive significance to consider the characteristics of orthotropic and large amplitude for preventing the instability destruction of structures.

COMPUTATION AND ANALYSIS OF MATHEMATICAL MODEL FOR MOVING FREE BOUNDARY FLOWS

  • Sohn, Sung-Ik
    • 대한수학회지
    • /
    • 제37권5호
    • /
    • pp.779-791
    • /
    • 2000
  • The nonlinear stage of the evolution of free boundary between a light fluid and a heavy fluid driven by an external force is studied by a potential flow model with a source singlarity. The potential flow model is applied to a bubble and spije evolution for constantly accelerated interface (Rayleigh-Taylor instability) and impulsively accelerated interface (Richtmyer-Meshkow instability). The numerical results of the model show that, in constantly accelerated intergace, bubble grows with constant velocity and the spike falls with gravitational acceleration at later times, while the velocity of the bubble in impulsively accelerated interface decay to zero asymp flow model for the bubble and spike for constantly accelerated interface and impulsively accelerated interface.

  • PDF

덤프 연소기에서의 열음향 불안정에 관한 수치적 연구 (Numerical Simulation on Thermoacoustic Instability in the Dump Combustor)

  • 김현준;배수호;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.294-301
    • /
    • 2005
  • The instabilities in rocket engines and gas turbine combustors due to the interaction between the fluid flow (acoustics) and the heat transfer (thermal energy) are called thermoacoustic or combustion instabilities. Almost all analysis assumes constant hot section temperature for Modern mathematical analysis of acoustic oscillations in Rijke type devices. However, it is impossible to predict whether a system is stable or not because the flame or heater response model can have a dramatic effect on predicted growth rates. In this study, A standard ${\kappa}-{\varepsilon}$ turbulent model and hybrid combustion model(eddy breakup model and chemical reaction) were used. After steady solution was gotten, unsteady calculation is simulated by perturbating on pressure boundary. As a result, we obtained the relationship of equivalence ratio and frequency by numerical simulation, and they are comparable to the experimental result. In addition, in spite of these results, there are limitations of using turbulent and combustion model in simulation method of thermoacoutic instability

  • PDF

밑으로부터 가열되는 평면 Couette 유동에서 점성소산이 열적 불안정성에 미치는 영향 (Effects of Viscous Dissipation on the Thermal Instability of Plane Couette Flow Heated from Below)

  • 유정열;박영무
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.489-498
    • /
    • 1988
  • An analysis has been given for the effect of viscous dissipation on the thermal instability of plane Couette flow between two parallel plates maintained at different constant temperatures. Under the assumption that the principle of the exchange of stabilities holds, stationary disturbance quantities in the form of longitudinal vortices are considered. The magnitudes of disturbance quantities are then represented as fast convergent power series so that the eigenvalue problem for determining the onset conditions of the thermal instability may be reduced to a simplified problem of finding the roots of a $4{\times}4$ determinant. It is shown that as the magnitude of the visucous dissipation increases the flow becomes more susceptible to instabilities, which is in very good agreement with previous results obtained in some related researches.

  • PDF

정적 연소실 내 R134a 및 메탄 예혼합 화염의 전파 특성 (Characteristics of Premixed Flame Propagations of R134a/Methane in a Constant Volume Combustion Chamber)

  • 최병철;박준성
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.85-86
    • /
    • 2014
  • The characteristics of the outward-propagating premixed flames of stoichiometric mixtures of R134a/methane/oxygen/nitrogen have been experimentally investigated in a constant volume combustion chamber. Three regimes of the expanding flames were categorized based on the flame behavior.

  • PDF

나노스케일 마찰거동에서 스프링 상수가 마찰에 미치는 영향에 대한 분자동역학 연구 (Study on Influence of Spring Constant on Frictional Behavior at the Nanoscale through Molecular Dynamics Simulation)

  • 강원빈;김현준
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.77-80
    • /
    • 2021
  • In this study, we investigated the effect of the spring constant on frictional behavior at a nanoscale through molecular dynamics simulation. A small cube-shaped tip was modeled and placed on a flat substrate. We did not apply the normal force to the tip but applied adhesive force between the tip and the substrate. The tip was horizontally pulled by a virtual spring to generate relative motion against the substrate. The controlled spring constant of the virtual spring ranged from 0.3 to 70 N/m to reveal its effect on frictional behavior. During the sliding simulation, we monitored the frictional force and the position of the tip. As the spring constant decreased from 70 to 0.3 N/m, the frictional force increased from 0.1 to 0.25 nN. A logarithmic relationship between the frictional force and spring constant was established. The stick-slip instability and potential energy slope increased with a decreasing spring constant. Based on the results, an increase in the spring constant reduces the probability of trapping in the local minima on the potential energy surface. Thus, the energy loss of escaping the potential well is minimized as the spring constant increases.

Nonlinear wind-induced instability of orthotropic plane membrane structures

  • Liu, Changjiang;Ji, Feng;Zheng, Zhoulian;Wu, Yuyou;Guo, Jianjun
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.415-432
    • /
    • 2017
  • The nonlinear aerodynamic instability of a tensioned plane orthotropic membrane structure is theoretically investigated in this paper. The interaction governing equation of wind-structure coupling is established by the Von $K\acute{a}rm\acute{a}n's$ large amplitude theory and the D'Alembert's principle. The aerodynamic force is determined by the potential flow theory of fluid mechanics and the thin airfoil theory of aerodynamics. Then the interaction governing equation is transformed into a second order nonlinear differential equation with constant coefficients by the Bubnov-Galerkin method. The critical wind velocity is obtained by judging the stability of the second order nonlinear differential equation. From the analysis of examples, we can conclude that it's of great significance to consider the orthotropy and geometrical nonlinearity to prevent the aerodynamic instability of plane membrane structures; we should comprehensively consider the effects of various factors on the design of plane membrane structures; and the formula of critical wind velocity obtained in this paper provides a more accurate theoretical solution for the aerodynamic stability of the plane membrane structures than the previous studies.

Aeroelastic Behaviour of Aerospace Structural Elements with Follower Force: A Review

  • Datta, P.K.;Biswas, S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권2호
    • /
    • pp.134-148
    • /
    • 2011
  • In general, forces acting on aerospace structures can be divided into two categories-a) conservative forces and b) nonconservative forces. Aeroelastic effects occur due to highly flexible nature of the structure, coupled with the unsteady aerodynamic forces, causing unbounded static deflection (divergence) and dynamic oscillations (flutter). Flexible wing panels subjected to jet thrust and missile type of structures under end rocket thrust are nonconservative systems. Here the structural elements are subjected to follower kind of forces; as the end thrust follow the deformed shape of the flexible structure. When a structure is under a constant follower force whose direction changes according to the deformation of the structure, it may undergo static instability (divergence) where transverse natural frequencies merge into zero and dynamic instability (flutter), where two natural frequencies coincide with each other resulting in the amplitude of vibration growing without bound. However, when the follower forces are pulsating in nature, another kind of dynamic instability is also seen. If certain conditions are satisfied between the driving frequency and the transverse natural frequency, then dynamic instability called 'parametric resonance' occurs and the amplitude of transverse vibration increases without bound. The present review paper will discuss the aeroelastic behaviour of aerospace structures under nonconservative forces.

Gravitational Instability of Rotating Isothermal Rings

  • Moon, Sanghyuk;Kim, Woong-Tae
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.61.2-61.2
    • /
    • 2016
  • Nuclear rings at centers of barred galaxies exhibit strong star formation activities. They are thought to undergo gravitational instability when sufficiently massive. We approximate them as rigidly-rotating isothermal objects and investigate their gravitational instability. Using a self-consistent eld method, we first construct their equilibrium sequences specified by two parameters: ${\alpha}$ corresponding to the thermal energy relative to gravitational potential energy, and $R_B$ measuring the ellipticity or ring thickness. The density distributions in the meridional plane are steeper for smaller ${\alpha}$, and well approximated by those of infinite cylinders for slender rings. We also calculate the dispersion relations of nonaxisymmetric modes in rigidly-rotating slender rings with angular frequency ${\Omega}$ and central density ${\rho}_c$. Rings with smaller are found more unstable with a larger unstable range of the azimuthal mode number. The instability is completely suppressed by rotation when ${\Omega}$ exceeds the critical value. The critical angular frequency is found to be almost constant at $0.7(G{\rho}_c)^{1/2}$ for ${\alpha}$ > 0.01 and increases rapidly for smaller ${\alpha}$. We apply our results to a sample of observed star-forming rings and confirm that rings without a noticeable azimuthal age gradient of young star clusters are indeed gravitationally unstable.

  • PDF