• 제목/요약/키워드: Instability Map

검색결과 51건 처리시간 0.018초

모형 연소실에서 분사기 연소 안정성 평가에 관한 실험적 연구 (A Experimental Study on Combustion-Stability Rating in a Subscale Chamber)

  • 김철진;손채훈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.77-78
    • /
    • 2012
  • To predict combustion instability in actual full-scale combustion chamber of rocket engines, air-injection test is proposed with scaling techniques. From the data, damping factors have been obtained as a function of hydraulic parameter and the data give us instability map. Two instability regions are presented and it is found that they coincide reasonably with them from hot-fire test with full-scale flow rates. Accordingly, the proposed approach can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

  • PDF

High Temperature Deformation Behavior of Al-Zn-Mg-Based New Alloy Using a Dynamic Material Model

  • Jang, Bong Jung;Park, Hyun Soon;Kim, Mok-Soon
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1249-1255
    • /
    • 2018
  • High temperature compression tests for newly developed Al-Zn-Mg alloy were carried out to investigate its hot deformation behavior and obtain deformation processing maps. In the compression tests, cylindrical specimens were deformed at high temperatures ($300-500^{\circ}C$) and strain rates of 0.001-1/s. Using the true stress-true strain curves obtained from the compression tests, processing maps were constructed by evaluating the power dissipation efficiency map and flow instability map. The processing map can be divided into three areas according to the microstructures of the deformed specimens: instability area with flow localization, instability area with mixed grains, and stable area with homogeneous grains resulting from continuous dynamic recrystallization (CDRX). The results suggest that the optimal processing conditions for the Al-Zn-Mg alloy are $450^{\circ}C$ and a strain rate of 0.001/s, having a stable area with homogeneous grains resulting from CDRX.

자동차 휠용 6061 Al합금의 고온변형거동에 따른 단조성형조건 설계 (Forging Process Design by High Temperature Deformation Behavior of the 6061 Aluminum Alloy)

  • 이동근;이지혜;김정한;박노광;이용태;정헌수
    • 대한금속재료학회지
    • /
    • 제46권7호
    • /
    • pp.449-457
    • /
    • 2008
  • Compression deformation behaviors at high temperature as a function of temperature and strain rate were investigated in the 6061 aluminum alloy, which is used for automobile wheel. Compression tests were carried out in the range of temperatures $300{\sim}475^{\circ}C$ and strain rate $10^{-3}{\sim}10^{-1}sec^{-1}$. By analyzing these results, strain rate sensitivity, deformation temperature sensitivity, the efficiency of power dissipation, Ziegler's instability criterion, etc were calculated, which were plastic deformation instability parameters as suggested by Ziegler, Malas, etc. Furthermore, deformation processing map was drawn by introducing dynamic materials model (DMM) and Ziegler's Continuum Criteria. This processing map was evaluated by relating the deformation instability conditions and the real microstructures. As a result, the optimum forging condition for the automobile wheel with the 6061 aluminum alloy was designed at temperature $450^{\circ}C$, strain rate $1.0{\times}10^{-1}sec^{-1}$. It was also confirmed by DEFORM finite element analysis tool with simulation process.

Ni계 초내열합금 NIMONIC 80A의 고온변형거동 (High Temperature Deformation Behavior of a NIMONIC 80A Ni-based Superalloy)

  • 하민철;황시우;김종수;김철유;박경태
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.258-263
    • /
    • 2013
  • The deformation behavior of NIMONIC 80A was studied in the high temperature range of $900{\sim}1200^{\circ}C$ and for strain rates varying between 0.02 and $20s^{-1}$ via the hot compression test. Processing maps for hot working were constructed on the basis of the power dissipation efficiency using a dynamic material model. The results showed that the strength during hot compression increased with increasing strain rate and decreasing temperature. At low strains, the processing map of NIMONIC 80A did not reveal any instability domain regardless of the strain rate and temperature. However, at high strains, the processing map exhibited an instability domain at a low strain rate of $0.2s^{-1}$ and within a temperature range of $900{\sim}960^{\circ}C$. In the instability domain, the deformed microstructure exhibited shear bands and carbide precipitation while, in the safe domain, full recrystallization occurred.

변형 공정지도를 활용한 A350 LF2 소재의 고온 성형성 평가 (Evaluation of High Temperature Workability of A350 LF2 Using the Deformation Processing Map)

  • 정은정;김정한;이동근;박노광;이종수;염종택
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.333-339
    • /
    • 2006
  • Hot deformation behavior of a carbon steel (A350 LF2) was characterized by compression tests in the temperature range of $800-1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$, The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing a deformation processing map. Processing maps were generated using the combination of dynamic material model (DMM) and flow instability theories based on the flow stability criteria and Ziegler's instability criterion. In order to evaluate the reliability of the map, the mirostructural characteristics of the hot compressed specimens were correlated with test conditions in the stable and unstable regime. The combined microstructural and processing map of A350 LF2 was applied to predict an optimum condition and unstable regions for hot forming.

Zr계 벌크 비정질 합금의 변형 모드와 압출 특성의 상관 관계에 관한 연구 (A Study on the Relationship between Deformation Mode and Extrusion Properties for Zr-based Bulk Metallic Glass)

  • 이광석;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.199-202
    • /
    • 2004
  • In this present study, an attempt was made to determine the deformation mode of the Zr-Ti-Cu-Ni-Be bulk metallic glass by compression test over a wide range of temperatures and strain rates. From the results, empirical deformation map could be constructed including the boundaries of different deformation modes. Considering power dissipation map and instability map developed on the basis of the Dynamic Materials Model (DMM), the processing map for extrusion could also be constructed. In addition, the macroscopic formability of this BMG alloy has also been examined through the extrusion in laboratory scale within undercooled liquid state. From the results of macroscopic extrusion formability, both deformation map and processing map present good criteria to determine optimal forming conditions.

  • PDF

모형 가스터빈 연소기에서의 연소 불안정 모드 분석에 관한 실험적 연구 (An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor)

  • 이장수;김민기;박성순;이종근;윤영빈
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.12-21
    • /
    • 2010
  • The main objective of this study was investigation of combustion instability characteristics in a lean partially premixed gas turbine dump combustor. Dynamic pressure transducers were located on combustor and inlet section to observe combustion pressure oscillation and difference at each measurement places. Also flame shape and $CH^*$ chemiluminescence were measured using a high speed ICCD camera. The combustor length was varied in order to have different acoustic characteristics from 800 to 1090 mm. The first section of this paper shows the stability map in model gas turbine combustor. And the effects of combustor length, mixture velocity in the mixing section and equivalence ratio were studied by the pressure perturbation and heat release oscillation. Also, the instability frequency and mode analysis were studied in last two sections. We observed two dominant instability frequencies in this study. Lower frequencies were obtained at lower equivalence ratio region and it was associated with a fundamental longitudinal mode of combustor length. Higher frequencies were observed in higher equivalence ratio conditions. It was related to secondary longitudinal mode of combustor and mixing section. In this instability characteristics, pressure oscillation of mixing section part was larger than pressure oscillation of combustor. As a result, combustion instability was strongly affected by acoustic characteristics of combustor and mixing section geometry.

모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구 (An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor)

  • 이연주;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF

지구정보시스템을 이용한 충주호 북부 지역의 사면 안정 평가 (Analysis of Slope Stability Using GIS in the Northern Area of Chungju Lake)

  • 문상기
    • 자원환경지질
    • /
    • 제33권1호
    • /
    • pp.51-59
    • /
    • 2000
  • As a part of natural hazard assessment, regional slope stability analysis was conducted using Geoscientific Information System (GIS) in the northern area of Chungju Lake. Selected factors which affect the slope stability in the study area were lithology, soil, density of lineament, groundwater level, dip of slope, aspect of slope, and geological engineering properties. Geological structural domains were determined by collected data of joint orientation from about 200 sites in order to produce a slope instability map. Potential type of failure and its direction could be expected through the domains. And a slope instability map was produced, comparing the representative orientations of the domains with the orientations of the slopes which were made through TIN module in ARC/INFO. Under the consideration of environmental geological characteristics of the study area, rating and weighting of each factor of slope stability analysis were decided and spatial analysis of regional slope stability was couducted through overlaying technique of GIS. The result of areal distribution of slope stability showed that the most unstable area was the area between Mt. Pudae and Mt. Jubong, and the northern area of the railway station, Samtan.

  • PDF

Ti-6Al-4V 합금의 대형 링 압연공정설계 (Process Design for Large-Scale Ring-Rolling of Ti-6Al-4V Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 소성∙가공
    • /
    • 제16권3호
    • /
    • pp.172-177
    • /
    • 2007
  • The process design for large-scale ring rolling of Ti-6Al-4V alloy was performed by calculation method, processing map approach and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was used to make geometry design such as initial billet and blank sizes, and final rolled ring shape. A commercial FEM code, SHAPE-RR was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling and the formation of over-heating above $\beta$-transus temperature due to deformation heating, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.