• Title/Summary/Keyword: Instability Condition

Search Result 503, Processing Time 0.026 seconds

INSTABILITY OF OBLIQUE SHOCK WAVES WITH HEAT ADDITION (후방 발열이 있는 경사 충격파의 불안정성)

  • Choi, J.Y.;Shin, J.R.;Cho, D.R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.232-235
    • /
    • 2007
  • A comprehensive numerical study was carried out to identify the on-set condition of the cell structures of oblique detonation waves (ODWs). Mach 7 incoming flow was considered with all other flow variables were fixed except the flow turning angles varying from 35 to 38. For a given flow conditions theoretical maximum turning angle is $38.2^{\circ}$ where the oblique detonation wave may be stabilized. The effects of grid resolution were tested using grids from $255{\times}100$ to $4,005{\times}1,600$. The numerical smoked foil records exhibits the detonation cell structures with dual triple points running opposite directions for the 36 to 38 turning angles. As the turning angle get closer to the maximum angle the cell structures gets finer and the oscillatory behavior of the primary triple point was observed. The thermal occlusion behind the oblique detonation wave was observed for the $38^{\circ}$ turning angle.

  • PDF

Instability of High-Speed Impinging Jets(I) (고속 충돌제트의 불안정특성)

  • Gwon, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.452-458
    • /
    • 1998
  • The objective of this study is to obtain the unstable characteristics of the high-speed two-dimensional jet impinging normally onto a flat plate. The study is based on the feedback model and the experiment of the frequency characteristics of the impinging tones. Using the experimental data for the tonal frequencies of the impinging tones the convection speed of the unstable jet is obtained along with all the other features. Three kinds of unstable modes are clarified: asymmetric $A_{1}$ and $A_{2}$ and symmetric S. The condition for the excitation of each mode is found in terms of Strouhal number and Reynolds number. The convection speed is estimated and discussed in comparison with existing theoretical models. It is found that the convection speed increases with frequency when the mode is asymmetric, but decreases when it is symmetric. In addition, the characteristics of the high-speed impinging jet are compared with the low-speed impinging jet.

Application of Combustion Stabilization Devices to Liquid Rocket Engine (액체 로켓엔진에서 연소 안정화기구의 적용에 관한 연구)

  • Sohn Chae-Hoon;Moon Yoon-Wan;Ryu Chul-Sung;Kim Young-Mog
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.259-262
    • /
    • 2002
  • Application of combustion stabilization devices such as baffle and acoustic cavity to liquid propellant rocket engine is investigated to suppress high-frequency combustion instability, i.e., acoustic instability. First, these damping devices are designed based on linear damping theory. As a principal design parameter, damping factor is considered and calculated numerically in the chambers with various specifications of these devices. Next, the unbaffled chambers with/without acoustic cavities are tested experimentally for several operating conditions. The unbaffled chamber shows the specific stability characteristics depending on the operating condition and has small dynamic stability margin. The most hazardous frequency is clearly identified through Fast Fourier Transform. As a result, the acoustic cavity with the present design has little stabilization effect in this specific chamber. Finally, stability rating tests are conducted with the baffled chamber, where evident combustion stabilization is observed, which indicates sufficient damping effect. Thrust loss caused by baffle installation is about $2{\%}$.

  • PDF

Dynamic Stability Analysis of A Vehicle in Limit Driving for Crash Avoidance (충돌회피를 위한 극한 운전시 자동차의 동적안정성 해석)

  • Kim, S.P.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.106-123
    • /
    • 1997
  • In this study, vehicle directional stability is investigated for limit driving for crash avoidance maneuver using a full vehicle dynamic model. The model was analytically validated using typical step steering and lane change simulation. Limit driving condition for the vehicle model was quoted from research results of references. It was demonstrated that instable vehicle motion was caused by not only road conditions but also driving conditions. Also, the simulation showed that braking combined with steering caused very hazardous situation in crash avoidance maneuver. Finally, phase plane plot approach was used to evaluate the dynamic instability.

  • PDF

Experimental Investigation on the Pressure-Drop Instabilities in Boiling Channel (비등유로의 압력강하 불안정성에 대한 실험적 고찰)

  • Kim, B.J.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • The characteristics of pressure-drop oscillations(PDO) in boiling channel are studied experimentally. The effects of initial and boundary conditions on PDO are investigated in terms of oscillation period and amplitude. The period and amplitude of PDO are increased with the increase in the compressible volume in surge tank and heat input. However the amplitude of PDO is decreased with fluid temperature under low subcooling condition. Higher initial insurge flowrate resulted in almost invariant oscillation period but lower amplitude. At higher heat input the oscillation of heater wall temperature is significant, whose period is the same as that of pressure-drop instability.

  • PDF

The Improvement of Continuation Power Flow System Including the Algorithm of Practical Step Length Selection (실용적인 스텝크기 선택 알고리듬을 고려한 연속조류계산 시스템의 개발)

  • Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Se-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.190-196
    • /
    • 1999
  • Continuation power flow has been developed to remove the ill-condition problem caused by singularity of power flow Jacobian at and near at steady-state voltage instability point in conventional power flow. Continuation power flow consists of predictor and corrector. In prddictor, the direction vector at the resent solution is caluculated and the initial guess of next solution is determined at the distance of step length. The selection of step length is a very important part, since computational speed and convergence performance are both greatly affected by the choice of the step length. This paper presents the practical step length selection algorithm using the reactive power generation sensitivith. In numulation, the proposed algorithm is compared with step length selection algorithm using TVI(tangent vector index).

  • PDF

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

An Experimental Study On Characteristics of Flame and Combustion Stability of Coaxial Jet Injectors (동축형 제트 분사기의 화염 및 연소 안정성 특성에 관한 실험적 연구)

  • Son, Jinwoo;Min, Yong Ho;Sohn, Chae Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.15-21
    • /
    • 2016
  • Flame characteristics and combustion stability of a swirl coaxial injector are studied experimentally. Characteristics of flame and combustion instability are analyzed with the parameter of MFR (momentum flux ratio) using hexane instead of kerosene. Flame patterns of blue and yellow are changed with variable MFR. Combustion instabilities are measured and analyzed by adopting a model chamber. Combustion instability mapping is made by evaluating damping factor at the 2 L (second longitudinal) mode with variable MFR in 63 cases for operating condition.

Assessment of Hot Deformation and Grain Size Distribution in a Udimet 720Li Pancake (Udimet 720Li 합금의 고온변형 및 결정립분포 예측)

  • 염종택;나영상;박노광
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.538-546
    • /
    • 2002
  • Hot deformation behavior of Udiment720Li was characterized by compression tests in the temperature range of 10$25^{\circ}C$ to 115$0^{\circ}C$ and the strain rate range of $0.0005 s^{-1};to;5 s^{-1}$. The combination of dynamic material model (DMM) and Ziegler's instability criterion was applied to predict an optimum condition and unstable regions for hot forming. A dynamic recrystallization model coupled with FEM results was used to interpret the evolution of microstructures. In order to verify the reliability of the present coupled model, isothermal forging was performed in the temperature range 1050~115$0^{\circ}C$ at strain rates of $0.05 s^{-1};and;0.005 s^{-1}$. The present model was successfully applied to the hot forming process of Udimet720Li.

The Effect of Damping Plate on Mathieu-type Instability of Spar Platform (스파 플랫폼의 Mathieu형 불안정성에 미치는 감쇠판의 영향)

  • Rho, Jun-Bumn;Choi, Hang-Soon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.2 s.140
    • /
    • pp.124-128
    • /
    • 2005
  • This paper describes motion stability of a spar platform with and without a damping plate in regular waves. The heave and pitch motion equation is derived in terms of Mathieu equation and the stability diagram is obtained. It is shown that the spar platform with damping plate has smaller unstable region than that without damping plate in the stability diagram. Model tests are carried out to verify the mathematical analysis. Under the condition that the pitch natural period is approximately double the heave natural period and the heave motion is amplified at heave resonance, unstable pitch motions are evoked. However the unstable motion is stabilized in cases of spar platform with damping plate. Therefore the damping plate is an effective device to stabilize the motion of spar platform.