• Title/Summary/Keyword: Instability

Search Result 5,094, Processing Time 0.037 seconds

Fluid-elastic Instability in a Tube Array Subjected to Two-Phase Cross Flow (2 상 횡 유동장에 놓인 관군의 유체탄성불안정성)

  • Sim, Woo-Gun;Park, Mi-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.124-132
    • /
    • 2009
  • Experiments have been performed to investigate fluid-elastic instability of tube bundles, subjected to twophase cross flow. Fluid-elastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to the cross flow. The test section consists of cantilevered flexible cylinder(s) and rigid cylinders of normal square array. From a practical design point of view, fluid-elastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping parameter. For dynamic instability of cylinder rows, added mass, damping and the threshold flow velocity are evaluated. The Fluid-elastic instability coefficient is calculated and then compared to existing results given for tube bundles in normal square array.

Analysis of Spray Characteristic for 3-Component Mixed Fuel (3 성분 혼합연료의 분무특성 해명)

  • Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The instability wave formed near nozzle region grows to vortex with large scale in downstream region of spray. It plays an important role in the fuel-air mixing, combustion process and engine exhaust emissions in direct injection diesel engine. The objective of this study is to analyze effect of variant parameters (injection pressure, ambient gas density, etc.) and fuel properties on spray instability near nozzle region. Spray structure near nozzle region was investigated using a magnification photograph. A pulsed Nd-YAG laser was used as a light source, and image was taken by CCD camera. The following conclusions are drawn from this experimental analysis. In low ambient density, the effect of fuel properties on spray instability near nozzle region is dominant. In high ambient density, the effect of ambient gas on spray instability near nozzle region is dominant. High jet velocity has strong influence on spray instability.

Domestic and Foreign Research Trends in Rocket Combustor Instability (국내외 로켓연소기의 연소불안정 연구동향 분석)

  • Bae, Jinhyun;Jeong, Seokgyu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.47-53
    • /
    • 2017
  • One of the most common causes of failure of space launch vehicles is combustion instability. Combustion instability is a phenomenon that the pressure perturbation inside the combustion chamber is greatly amplified due to the interaction of the pressure perturbation inside the combustion chamber and the heat release perturbation. When this phenomenon becomes worse, an engine failure or launch vehicle crash occurs. In order to predict and avoid such combustion instability, understanding of the phenomenon is indispensable, and numerical, theoretical, and experimental approaches to combustion instability have been carried out worldwidely.

  • PDF

Chaotic and Instability Effects in Brillouin-Active Fiber-Ring Sensor (광섬유링센서에서 유도되는 브루앤파의 혼돈 및 비안정화 현상)

  • Kim, Yong K.;Kim, Jin-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.337-341
    • /
    • 2004
  • In this paper the effect of chaos induced instability in Brillouin-active fiber-ring sensor is described. The inherent optical feedback by the backscattered Stokes wave in optical fiber leads to instabilities in the form of optical chaos. The paradigm of optical chaos in fiber serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in communication and sensing. At weak power, the nature of the Brillouin instability can occur at before threshold. At strong power, the temporal evolution above threshold is periodic and at higher intensity can become chaotic. The threshold for the Brillouin instability in fiber-ring sensor is much lower than the threshold of the normal Brillouin instability process.

An Experimental on Cellular Instability and Laminar Burning Velocity of SNG Fuel (SNG 연료의 셀 불안정성 및 층류연소속도에 관한 실험적 연구)

  • Kim, Dongchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.109-112
    • /
    • 2015
  • This article describes a cellular instability and laminar burning velocity of simulated synthetic natural gas(SNG) including 3% hydrogen. In this study, experimental apparatus is employed using cylindrical bomb combustor, and investigation is carried out with high speed camera and Schlieren system. The cellular instability is caused by the buoyancy, hydrodynamic instability. Unstretched burning velocity can be determined by extrapolated stretch rate of zero point from measured results. These results were also compared with numerical calculation by Chemkin package with GRI 3.0, USC-II, WANG, C3 Fuel mechanism. As an experimental conditions, equivalence ratios was adjusted from 0.8 to 1.3. From results of this work, the one was found that the cellular instability has occurred by effect of thermal expansion rate and flame thickness. As the other results, unstretched laminar burning velocity was best coincided with GRI 3.0 mechanism.

  • PDF

1D and 3D Thermoacoustic Combustion Instability Modeling (1D 및 3D 열음향 연소불안정 모델링)

  • Kim, Jin Ah;Lim, Jaeyoung;Kim, Jihwan;Pyo, Yeongmin;Kim, Deasik
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.113-114
    • /
    • 2015
  • In this study, 1D and 3D thermoacoustic analysis model were developed in order to predict fundamental characteristics of combustion instability in a gas turbine lean premixed combustor. The 1D network model can be used to analyze frequency and growth rate of combustor instability by simply dividing whole system into a couple of acoustic sub-elements, while the 3D Helmholtz solver model can predict directly acoustic modes as well as basic properties of combustion instability. Prediction results of both 1D and 3D models generally showed a good agreement with the measurements, even if there was a slight overestimation for instability range.

  • PDF

Fluidelastic Instability of Flexible Cylinders in Tube Bundle Subjected to Cross Air-flow (공기-횡 유동장에 놓인 유연성 실린더 관군의 유체탄성 불안정)

  • Sim, Woo-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.498-506
    • /
    • 2007
  • Using wind tunnel, experimental approaches were employed to investigate fluidelastic instability of tube bundles, subjected to uniform cross flow. There are several flow-induced vibration excitation mechanisms, such as fluidelastic instability, periodic wake shedding resonance, turbulence-induced excitation and acoustic resonance, which could cause excessive vibration in shell-and tube heat exchanges. Fluidelastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross flow. The system comprised of cantilevered flexible cylinder(s) and rigid cylinders of normal square array, In order to see the characteristics of flow in tube bundles, particle image velocimetry was used. From a practical design point of view, Fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. The threshold flow velocity for dynamic instability of cylinder rows is evaluated and the data for design guideline is proposed for the tube bundles of normal square array.

Design and Test of Oxidizer-Rich Triplex Injector Preburner (산화제 과잉 삼중분사기 예연소기 개발 시험)

  • Ha, Seong-Up;Moon, Il-Yoon;Kang, Sang-Hun;Moon, In-Sang;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.76-80
    • /
    • 2012
  • Uni-element preburners using a oxidizer-rich triplex injector have been designed and tested. During combustion tests 1L mode high-frequency instability of 1100 Hz and low-frequency instability of 100 Hz were observed. High-frequency instability has been suppressed by reducing chamber diameter and applying turbulent rings in combustion chamber. Recently, research to reduce low-frequency instability is in progress.

  • PDF

Arthroscopic Procedure in the Treatment of Chronic Lateral Ankle Instability (만성 발목 불안정증의 치료에서 관절경 수술)

  • Lee, Ho Jin;Jeong, Bi O
    • Journal of Korean Foot and Ankle Society
    • /
    • v.25 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • The open Broström procedure is considered the surgery of choice for treating chronic lateral ankle instability. The role of arthroscopy has gained popularity in the surgical treatment of chronic lateral ankle instability, partly for the ability to manage the intra-articular pathology combined with ankle instability. Arthroscopic techniques can be divided broadly into the arthroscopic-assisted Broström technique and arthroscopic all-inside ligament repair. The clinical results of these arthroscopic techniques are similar to open procedures. The arthroscopic technique may be an excellent alternative to the open Broström procedure in treating chronic lateral ankle instability when applying the appropriate indications.

Flow-induced instability and nonlinear dynamics of a tube array considering the effect of a clearance gap

  • Lai, Jiang;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1650-1657
    • /
    • 2019
  • Fluidelastic instability and nonlinear dynamics of tube bundles is a key issue in a steam generator. Especially, once the post-instability motion of the tube becomes larger than the clearance gap to other tubes, effective contact or impact between the tubes under consideration and the other tube inevitable. There is seldom theoretical analysis to the nonlinear dynamic characteristics of a tube array in two-phase flow. In this paper, experimental and numerical studies were utilized to obtain the critical velocity of the flow-induced instability of a rotated triangular tube array. The calculation results agreed well with the experimental data. To explore the post-instability dynamics of the tube array system, a Runge-Kutta scheme was used to solve the nonlinear governing equations of tube motion. The numerical results indicated that, when the flow pitch velocity is larger than the critical velocity, the tube array system is undergoing a limit cycle motion, and the dynamic characteristics of the tube array are almost similar for different void fractions.