• Title/Summary/Keyword: Inspiration volume

Search Result 50, Processing Time 0.022 seconds

The Effect of Chest Expansion and Pulmonary Function of Stroke Patients after Breathing Exercise (호흡운동이 뇌졸중 환자의 흉곽 확장과 폐 기능에 미치는 영향)

  • Lee, Jeon-Hyeong;Kwon, Yoo-Jung;Kim, Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • Purpose: This study examined whether breathing exercises might increase the chest expansion and pulmonary function of stroke patients. Methods: Twenty four patients with stroke were assigned randomly into two groups: a combination of diaphragmatic resistive breathing and pursed-lip breathing exercise (CB) group (n=10) and control group (n=14). The CB group completed a 4-week program of diaphragmatic resistive breathing and pursed-lip breathing exercise. The subjects were assessed using the pre-test and post-test measurements of the chest expansion (length for resting, deep inspiration, deep expiration, deep expiration-inspiration) and pulmonary function (forced vital capacity (FVC), forced expiratory volume at one second (FEV1), FEV1/FVC, peak expiratory flow (PEF), vital capacity (VC), tidal volume (TV), expiratory reserve volume (ERV), inspiratory reserve volume (IRV)). Results: A comparison of the chest expansion between the pre and post tests revealed similar rest, deep inspiration, deep expiration, and deep expiration-inspiration lengths in the CB and control groups (p>0.05). A comparison of the pulmonary function between pre and post tests, revealed significant improvements in the FVC, FEV, PEF, VC, IRV, and ERV in the CB group (p<0.05). There was a significant difference in the FVC, FEV1, PEF, VC and IRV between the 2 groups (p<0.05). Conclusion: These findings suggest that breathing exercise should help improve the pulmonary function, such as the volume and capacity. This suggests that the pulmonary functions of stroke patients might be improved further by a continued respiratory exercise program.

  • PDF

Analysis of correlation between the inspiratory capacity of the National softball players and the bone density, bon mass, muscle power, muscle endurance (국가대표 소프트볼선수들의 흡기능력과 골밀도 및 골 질량 그리고 체간의 근력 및 근지구력의 상관관계 분석)

  • Kim, Hyun Chul;Park, Ki Jun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.1
    • /
    • pp.95-104
    • /
    • 2020
  • PURPOSE: A prospective study was conducted to investigate the correlation between the inspiration ability, bone mineral density, lumbar muscle strength, and muscular endurance for the national softball athletes in the national training center. METHODS: The general characteristics of study subjects, inspiration ability, bone mineral density, muscle strength, and muscular endurance data were analyzed using descriptive statistics. In addition, the Pearson product moment correlation was performed to investigate the correlation between the inspiratory capacity, bone mineral density, muscle strength, and muscular endurance. RESULTS: The inspiration, flow rates, and volume were not correlated with the bone mass and bone mineral density. Inspiration and the flow rates and volume were not correlated with the bone mass and bone mineral density. On the other hand, inspiration was correlated with the Extensor muscles (r=.464, p=.006) at an angular velocity of 60°/s and the flexors (r=.463, p=.006) and extensor muscles (r=.615, p<.001) at an angular velocity of 180°/s. The flow rate was also correlated with the extensor muscles (r=.444, p=.009) at an angular velocity of 60°/s and with flexor muscles (r=.432, p=.011) and extensor muscles (r=.589, p<.001) at an angular velocity of 180°/s. Finally, the volume was correlated at the extensor muscles at an angular velocity of 180°/s (r=.534, p=.001). CONCLUSION: The correlation between the inspiratory capacity, bone mineral density, muscle strength, and muscular endurance of softball athletes did not correlate with the bone mass and bone density. On the other hand, the lumbar muscle strength increased with increasing inspiratory capacity.

Aerodynamic Characteristics of Whispered and Normal Speech during Reading Paragraph Tasks (문단낭독 시 속삭임 발화와 정상 발화의 공기역학적 특성)

  • Pyo, Hwayoung
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.57-62
    • /
    • 2014
  • The present study was performed to investigate and discuss the aerodynamic characteristics of whispered and normal speech during reading paragraph tasks. 39 normal females(18-23 yrs.) read 'Autumn' paragraph with whispered and normal phonation. Their readings were recorded and analyzed by 'Running Speech' in Phonatory Aerodynamic System(PAS) instrument. As results, during whispered speech, the total duration was longer and the numbers of inspiration were more frequently shown than normal speech. The Peak expiratory and inspiratory rate were higher in normal speech, but the expiratory and inspiratory volume were higher in whispered speech. By correlation analysis, both whispered and normal speech showed significantly high correlation between total duration and expiratory/inspiratory airflow duration; numbers of inspiration and inspiratory airflow duration; expiratory and inspiratory volume. These results show that whispered speech needs more respiratory effort but shows poorer aerodynamic efficacy during phonation than normal speech.

Effect on Respiratory Function of the General Adult by Gait Training Based on the Way in a Speed Pattern (속도 방식에 따른 보행훈련이 일반 성인의 호흡기능에 미치는 영향)

  • Jeong, Hyung-Yoon;Cho, Woon-Soo;Choi, Ah-young;Kim, Yong-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.515-522
    • /
    • 2018
  • The purpose of this study was to determine the effect of gait training based on the way in a speed pattern on the respiratory function of general adults. A total of 37 people were divided into three groups to conduct fast, standard, and interval gait training. For gait training, a treadmill was used. Three groups were trained for 60 minutes, three times per week, for a period of 6 weeks. Inspiration pressure, maximum inspiration volume, and the size of diaphragm movement were measured. Repeated Measures ANOVA was used to compare times, groups, and interactions. For inspiratory pressure, maximum inspiration volume, and size changes in diaphragm movement, there were significant differences depending on the time and interaction between times and groups. For size changes in diaphragm's movement, there was a significant difference between interval gait training group and standard gait training group. Therefore, interval gait training had effects on size changes in diaphragm movement.

Relative Timing of Inspiration and Expiration Affects Heart Rate Variability - Between Regulated Respiration and Control Group - (상대적인 호기와 흡기시간의 차이가 HRV에 미치는 영향 -대조군과 호흡유도의 비교-)

  • Yang, Dong-Hoon;Park, Young-Bae;Park, Young-Jae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.11 no.1
    • /
    • pp.146-156
    • /
    • 2007
  • 1. The effect of variations in inspiration and expiration times on heart rate variability was studied in 78 healthy subjects (mean age $24.35{\pm}1.92$ years; 47 male) between regulated respiration group and normal respiration group as the control group. 2. The control group followed normal respiration pattern, whereas the regulated group followed three types of respiration pattern. The first pattern was long respiration(E/I ratio 1.6:1), the second pattern was short inspiration followed by long expiration (SILE), and the last pattern was long inspiration followed by short expiration(LISE). The average expiration/inspiration time ratios of SILE and LISE were 1.0 and 3.4, respectively. The respiration rate in the regulated group was approximately 10 cycles/min. 3. Respiration rate and tidal volume are respiratory variables known to modulate RSA. The results of the present study indicate that RSA can also be modulated by a third respiratory variable, the expiration/inspiratory time ratio. In this study, LF, HF, RSA, VLF is increased the most in LISE group compared to the other groups. HF and RSA increased significantly in the long respiration rate and SILE groups. However LF and VLF, which reflects the sympathetic tones, did not increase as much as the LISE group.

  • PDF

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Correlation between the Diaphragmatic Contraction Pressure and the Slow Vital Capacity

  • Lee, Jae-Seok;Han, Dong-Wook;Kang, Tae-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.47-53
    • /
    • 2019
  • PURPOSE: This study measured the external pressure on abdomen during maximal inspiration. The study determined the correlation between the diaphragmatic contraction pressure and the lung capacities to verify whether or not the measured pressure values can represent diaphragmatic contractility. METHODS: The study included 32 healthy subjects (16 males and 16 females). The researchers fabricated their own diaphragmatic pressure belt (DiP Belt) to measure DCP. DiP Belt device was fixed on the front of the abdomen and the diaphragmatic contractility was measured during maximal inspiration. The lung capacities were measured using a portable digital spirometer device (Pony Fx, COSMED, Italy). A digital spirometer is a device that is used to test the flow of air entering and exiting the lungs. RESULTS: DCP showed significant positive correlations with vital capacity (VC), inspiratory reserve volume (IRV) and inspiratory capacity (IC). Among values of lung capacities, IC showed especially strong positive correlations with the DCP (r =.714, p<.010). For the males, DCP showed significant positive correlations with IRV and IC, and DCP showed significant negative correlation with the expiratory reserve volume (ERV). For the females, DCP showed significant positive correlation with tidal volume (VT), but any significant correlation was not found with any of the other values of lung capacities. CONCLUSION: DCP showed high correlations with IRV and IC associated with inspiratory capacity. Therefore, The DiP Belt can be looked upon as a simple device that is very useful for measuring diaphragmatic contractility.

New Method for Combined Quantitative Assessment of Air-Trapping and Emphysema on Chest Computed Tomography in Chronic Obstructive Pulmonary Disease: Comparison with Parametric Response Mapping

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Namkug Kim;Jaeyoun Yi;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh;Sang-Do Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1719-1729
    • /
    • 2021
  • Objective: Emphysema and small-airway disease are the two major components of chronic obstructive pulmonary disease (COPD). We propose a novel method of quantitative computed tomography (CT) emphysema air-trapping composite (EAtC) mapping to assess each COPD component. We analyzed the potential use of this method for assessing lung function in patients with COPD. Materials and Methods: A total of 584 patients with COPD underwent inspiration and expiration CTs. Using pairwise analysis of inspiration and expiration CTs with non-rigid registration, EAtC mapping classified lung parenchyma into three areas: Normal, functional air trapping (fAT), and emphysema (Emph). We defined fAT as the area with a density change of less than 60 Hounsfield units (HU) between inspiration and expiration CTs among areas with a density less than -856 HU on inspiration CT. The volume fraction of each area was compared with clinical parameters and pulmonary function tests (PFTs). The results were compared with those of parametric response mapping (PRM) analysis. Results: The relative volumes of the EAtC classes differed according to the Global Initiative for Chronic Obstructive Lung Disease stages (p < 0.001). Each class showed moderate correlations with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) (r = -0.659-0.674, p < 0.001). Both fAT and Emph were significant predictors of FEV1 and FEV1/FVC (R2 = 0.352 and 0.488, respectively; p < 0.001). fAT was a significant predictor of mean forced expiratory flow between 25% and 75% and residual volume/total vital capacity (R2 = 0.264 and 0.233, respectively; p < 0.001), while Emph and age were significant predictors of carbon monoxide diffusing capacity (R2 = 0.303; p < 0.001). fAT showed better correlations with PFTs than with small-airway disease on PRM. Conclusion: The proposed quantitative CT EAtC mapping provides comprehensive lung functional information on each disease component of COPD, which may serve as an imaging biomarker of lung function.

Liver dose reduction by deep inspiration breath hold technique in right-sided breast irradiation

  • Haji, Gunel;Nabizade, Ulviye;Kazimov, Kamal;Guliyeva, Naile;Isayev, Isa
    • Radiation Oncology Journal
    • /
    • v.37 no.4
    • /
    • pp.254-258
    • /
    • 2019
  • Purpose: Deep inspiration breath hold (DIBH) is a well-established technique that enables efficient cardiac sparing in patients with left-sided breast cancer. The aim of the current study was to determine if DIBH is effective for reducing radiation exposure of of liver and other organs at risk in right breast radiotherapy (RT). Materials and Methods: Twenty patients with right-sided breast cancer were enrolled in this study. Three-dimensional conformal RT plans were generated for each patient, with two different computed tomography scans of free breathing (FB) and DIBH. Nodes were contoured according to the Radiation Therapy Oncology Group contouring guidelines. Dose-volume histograms for the target volume coverage and organs at risk were evaluated and analyzed. Results: DIBH plans showed significant reduction in mean liver dose (5.59 ± 2.07 Gy vs. 2.54 ± 1.40 Gy; p = 0.0003), V20Gy (148.38 ± 73.05 vs. 64.19 ± 51.07 mL; p = 0.0003) and V10Gy (195.34 ± 93.57 vs. 89.81 ± 57.28 mL; p = 0.0003) volumes compared with FB plans. Right lung doses were also significantly reduced in DIBH plans. Heart and left lung doses showed small but statistically significant improvement with application of the DIBH technique. Conclusion: We report that the use of DIBH for right-sided breast cancer significantly reduces the radiation doses to the liver, lungs, and heart.

Zigbee Based Wireless Respiration Monitor System (지그비 통신 기반의 근거리 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.142-147
    • /
    • 2008
  • Abdominal circumference changes due to breathing by the respiratory muscle activity such as diaphragm, which would partially represent the lung volume variation. The present study introduced conductive rubber molded in a cord shape incorporated with a patient's pants. The conductive rubber cord operated as a displacement transducer to measure the lung or abdominal volume changes. Signal extraction circuitry was developed to obtain the volume and its derivative(or the flow) signals followed by wireless transmission based on the Zigbee communication protocol in a size of $65mm{\times}105mm$ easily put in pocket. Breathing frequency was accurately evaluated and breath pattern analysis seemed feasible, since respiratory behaviours such as maximal inspiration and cough were well identified. Remote wireless receiver module also enabled to monitor both volume and flow signals during resting breathing on a PC terminal.