• Title/Summary/Keyword: Inspection frequency

Search Result 496, Processing Time 0.029 seconds

Experimental Evaluation of Fatigue Behavior and Interlaminar Phase in the Lightweight Piezoelectric Ceramic Composite Actuator Using the Ultrasonic C-scan Inspection (초음파 C-스캔 탐상을 이용한 경량 압전세라믹 복합재료 작동기의 피로거동과 계면변화의 관계 연구)

  • Kim Cheol-Woong;Nam In-Chang;Yoon Kwang-Joon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1332-1336
    • /
    • 2005
  • It could make the LIghtweight Piezoelectric Composite Actuator (LIPCA) damageable by the cyclic large deformation. If the progressive microvoid coalescence of LIPCA interlaminar took place, the decrease of the stiffness and the weakness of stress transmission and fiber bridging effect would make the fatigue characteristics worse suddenly. Therefore, it is required to study the variation of fatigue behavior and interlaminar condition in LIPCA under resonant frequencies. These studies such as the changeable fatigue phase and interlaminar behavior of LIPCA affected by the resonant frequencies should be carried out due to the strong anisotropy of CFRP layer. Hence, these studies are as follows. 1) The residual stresses distribution of interlaminar in LIPCA using the Classical Lamination Theory (CLT). 2) Comparative analysis of interlaminar behavior for the intact LIPCA versus LIPCA containing an artificial delamination during resonant frequency.

  • PDF

Optical metrology for resonant surface acoustic wave in RF device (RF 소자의 표면탄성파 공진에 대한 광학적 측정)

  • Park, Jun-Oh;Jang, Won-Kweon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3435-3440
    • /
    • 2010
  • Unlike the electric method capable of checking only product defect, the real time optical metrology is suggested for measuring and visualizing vibration with respect to position of surface acoustic wave in RF device. The measuring limits and conditions for surface acoustic wave is given, and the interference and diffraction due to RF signal are analyzed by optical interpretation. A single mode laser and a 105MHz-center-frequency repeater filter were employed for experiments and theoretical analysis. In this paper, the optical metrology providing visual energy distribution and real time inspection for surface acoustic wave is proposed for development of high quality multi-service and multi-frequency RF module.

Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network (인공신경망을 이용한 가속도 센서 기반 타이어 트레드 마모도 판별 알고리즘)

  • Kim, Young-Jin;Kim, Hyeong-Jun;Han, Jun-Young;Lee, Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.163-171
    • /
    • 2020
  • The condition of tire tread is a key parameter closely related to the driving safety of a vehicle, which affects the contact force of the tire for braking, accelerating and cornering. The major factor influencing the contact force is tread wear, and the more tire tread wears out, the higher risk of losing control of a vehicle exits. The tire tread condition is generally checked by visual inspection that can be easily forgotten. In this paper, we propose the intelligent tire (iTire) system that consists of an acceleration sensor, a wireless signal transmission unit and a tread classifier. In addition, we also presents classification algorithm that transforms the acceleration signal into the frequency domain and extracts the features of several frequency bands as inputs to an artificial neural network. The artificial neural network for classifying tire wear was designed with an Multiple Layer Perceptron (MLP) model. Experiments showed that tread wear classification accuracy was over 80%.

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.

A study on the Quantification of vibration mode by ESPI using A.O Modulator (ESPI에서 AO변조기를 사용한 진동모드 정량화에 관한 연구)

  • 박낙규;유원재;안중근;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.207-210
    • /
    • 2001
  • Recently, the study on the vibration analysis of machinery is greatly important and ESPI is widely used because of its many attractive features. Firstly, ESPI can be used to measure the vibration mode shape and the phase in real-time. Secondly, the conventional measuring methode, such as accelerometers, take much time to measure the whole field of object, but ESPI needs shorter time than other methods. Because ESPI is a field-inspection method. Thirdly, ESPI is a non-contact measuring system. ESPI does not have influence on the specimen. Beyond these features, there are several advantages in ESPI system. In this paper, the Stroboscopic ESPI system is described for measurement of a vibration mode shape. The Stroboscopic ESPI system had been used to visualize the vibration mode shape, in which EO(Electro-Optic)modulator was used to chop CW(Continuous Wavefront)laser. But it was not easy to control EO modulator and quantified the vibration amplitude and the phase of circular metal plate. At first, we found resonant frequency of the specimen by using time-averaged ESPI method. Nextly, the amplitudes of specimen were quantified by using Stroboscopic ESPI and we compare the results which were obtained in several chopping ratio.

  • PDF

Improvement of Dynamic Characteristic of Large-Areal Planar Stage Using Induction Principle (인덕션 방식을 이용한 평면 스테이지의 동특성 개선)

  • Jung, Kwang-Suk;Park, Jun-Kyu;Kim, Hyo-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.675-682
    • /
    • 2009
  • Instead of direct driving like BLDC, the induction principle is adopted as a driving one for planar stage. The stage composed of four linear induction motors put in square type is activated by two-axial forces; low-frequency attractive force and thrust force of the linear induction motors. Here, the modified vector control whose new inputs are q-axis current and dc current biased to three phase current instead of d-axis current or flux current is applied extensively to overall motion of the stage. For the developed system, the precision step test and the constant velocity test are tried to guarantee its feasibility for TFT-LCD pattern inspection. However, to exclude a discontinuity due to phase shift and minimize a force ripple synchronized with the command frequency, the initial system is revised to the antagonistic structure over the full degree of freedom. Concretely describing, the porous air bearings guide an air-gapping of the stage up and down and a pair of liner induction motors instead of single motor are activated in the opposite direction each other. The performances of the above systems are compared from trapezoid tracking test and sinusoidal test.

A Study on Propagation of Guided Waves in a Steam Generator Tube (증기발생기 세관에서의 유도초음파 전파에 관한 연구)

  • 송성진;박준수;김재희;김준영;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.353-361
    • /
    • 2004
  • Propagation of the guided waves in a steam generator (SG) tube was investigated. Dispersion curves and the incident angles corresponding to the specific modes were calculated for the SG tube. The modes of guided wave were identified by time-frequency diagrams obtained by short time Fourier transform. Group velocities were also determined from the time-frequency diagrams obtained at the different separations of transducers. In experiment. distinct mode conversion was not observed when the guided ultrasound passed curved region of the S/G tube. The optimum mode of guided wave for the inspection of SG tube was suggested and verified by experiments.

Modeling of Debonding Detection Using Microstrip Patch Antenna (마이크로스트립 패치 안테나를 이용한 박리 탐사 모델링)

  • Rhim Hong-Chul;Lee Hyo-Seok;Woo Sang-Kyun;Song Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.35-39
    • /
    • 2006
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques. microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymer (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in actual measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with horn antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding. between concrete and FRP. Also, the equipment of ultrasonic method which is commercialized are used at the same condition. Both of the results are analyzed in comparison of each other. Microwave and ultrasonic methods have been used for the detection of debonding between concrete and fiber-reinforced plastic (FRP).

  • PDF

Performance evaluation of smart prefabricated concrete elements

  • Zonta, Daniele;Pozzi, Matteo;Bursi, Oreste S.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.475-494
    • /
    • 2007
  • This paper deals with the development of an innovative distributed construction system based on smart prefabricated concrete elements for the real-time condition assessment of civil infrastructure. So far, two reduced-scale prototypes have been produced, each consisting of a $0.2{\times}0.3{\times}5.6$ m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optic Sensors (FOS) at the lower edge. The sensing system is Fiber Bragg Grating (FBG)-based and can measure finite displacements both static and dynamic with a sample frequency of 625 Hz per channel. The performance of the system underwent validation in the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including cover spalling and corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. The outcomes of the experiment demonstrate how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.

The Study on the Material Evaluation and Development of Nondestructive Inspection System Using Laser Guided Ultrasonics (레이저 유도 초음파를 이용한 재료평가 및 비파괴 검사 시스템 개발에 관한 연구)

  • 김재열;송경석;김창현;김유홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.263-268
    • /
    • 2004
  • In the present study, a Nd;YAG Laser (pulse type) was used to emit ultrasonic signals to a test material. In addition, a total ultrasonic investigation system was designed by adopting a Fabry-Perot interferometer, which receives ultrasonic signals without any contact. For non-destructive test SM45C, which contains some flaws was used as a test material. Because it is easy to align light beam in receiver, and the length of the light beam does not change much even if convex mirror leans towards one side, confocal Fabry-Perot interferometer, which has stable frequency, and PI control are used to correct interfered and unstable signals from temperature, fluctuation and time shift of laser frequency. Stable signals are always obtained by the feedback of PI circuit signals in the confocal Fabry-Perot interferometer. The type, size and position of flaws inside the test material were examined by achieving the stabilization of an interferometer. This study presented a useful method, which could quantitatively investigate the fault of objects by using a Fabry-Perot interferometer.

  • PDF