• Title/Summary/Keyword: Inspection Robot

Search Result 225, Processing Time 0.027 seconds

Development of Inpipe Inspection Robot System for Underground Gas Pipelines (지하매설 가스배관 내부검사용 로봇시스템 개발)

  • 최혁렬;류성무;백상훈;조성휘;송성진;신현재;전재욱
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-129
    • /
    • 2000
  • The robotic automation in NonDestructive Testing(NDT) is a promising field of research and it helps to expand the applications of NDT enormously. Especially, in the case of pipelines which are widely used in various industrial facilities, it is required to secure adequate ways of inspection in the usual maintenance activitites. In this paper, we present a robot system for inpipe inspection of underground urban gas pipelines. The robot is configured as an articulated structure like a snake with a tether cable. Two active driving vehicles are located in front and rear of the system, respectively and passive modules such as a NonDestructive Testing module and a control module are chained between the active vehicles. The proposed system has outstanding mobility by employing a new steering mechanism called Double Active Universal Joint, which makes it possible to cope with complicated configurations of underground pipelines. Characteristic features of the system are described and the construction of the system is briefly outlined.

  • PDF

A Basic Study of ROV System Design for Underwater Structure Inspection (수중 구조물 검사를 위한 ROV 시스템 설계 연구)

  • Ryu, Jedoo;Nam, Keonseok;Ha, Kyoungnam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.463-471
    • /
    • 2020
  • Recently, various tries to apply ROV (Remotely Operated Vehicle) into underwater are being developed. However, due to underwater environment uniqueness, the additional problem must be taken into account when designing an ROV for the inspection of the underwater structure. This is because a GPS-based information method cannot be applied, and the obtainable image is also dependent on the turbidity. Also, it is necessary to be able to satisfy waterproof and operating speeds in consideration of most practical application environments. This paper describes the design results of the ROV system for underwater structure inspection considering the above problems. The designed system applied INS / DVL for location recognition and was configured to support 3D mapping and stereo camera-based image information using sonar depending on visibility. To satisfy the waterproof, a pressure vessel using a composite material was applied. And over-actuated system using eight thrusters to maintain a stable posture and operating speed was applied also. The designed system was verified by structural analysis and flow analysis also.

Automated Technology for Pipelines Inspection Using Inpipe Robot (배관 로봇을 이용한 배관 검사 자동화 기술)

  • Roh, Se-Gon;Choi, Hyouk-Ryeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.261-266
    • /
    • 2002
  • Up to now a wide variety of researches on inpipe robots for inspection have been introduced, but it still seems to be difficult to construct a robot providing mobility sufficient to navigate inside the complicated configuration of underground pipelines. The robot for the inspection of pipelines should freely move along the basic configuration of pipelines such as along horizontal or vertical pipelines. Moreover it should be able to travel along reducers and elbows, and especially the capability for steering in branches is essential to it. In this report, citical points and technologies in the development of the inpipe inspection robots are introduced and inpipe robots developed for last several years are introduced.

Scientific Inspection Method of PC Box Bridges Using Remote Control Tarantula Robot (원격제어 로봇을 이용한 PSC Box교량 내부 점검방법)

  • Lee, Byeong-Ju;Shin, Jae-In;Seo, Jin-Won;Lee, Ji-Yeong;Park, Yeong-Ha
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.561-562
    • /
    • 2009
  • The needs for inspection automation for more systematic and efficient maintenance were gradually increased by several inspectors and researchers. With the robotic and digital image processing technologies, in this paper, new inspection automation system were introduced and tested in the real PSC box crack inspection procedures The configuration and scheme of robotic inspection and digital image processing algorithms were represented. The designed robotic sensors and image processing system were tested and the feasibility and possibility of the robot based automatic inspection were approved in the real PSC box bridges.

  • PDF

Pose Estimation of a Cylindrical Object for an Inspection Robot (검사용 로봇을 위한 원기둥형 물체의 자세 추정 방법)

  • 정규원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • The cylindrical object such as a water pipe or an oil pipeline are widely used in the infrastructure. Those pipes should be inspected periodically by human or a robot. However, since there is no edge or vertex in the pipe, it is very difficult for the robot to navigate along the pipe. In this paper in order to guide the robot along the axis of the pipe, an algorithm which find the axis using the measured range data from the robot to the pipe wall is developed The algorithm is verified using both the simulated range data and the measured one.

Development of Robot System for Cleaning & Inspection of Live-line Tension Insulator String (활선 내장애자련 청소 및 점검용 로봇 시스템의 개발)

  • Park J.Y.;Cho B.H.;Byun S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.315-316
    • /
    • 2006
  • A new cleaning robot system for live-line tension insulator string was developed to prevent an insulator failure, which can have severe effects on national security as well as national industry and economy. The robot moves along the insulator string using the clamps installed on its two moving frames. Especially, unlike the existing cleaning robots using jets of water or water/air, the robot system adopts dry cleaning method using a rotating brush and a circular motion guide. This robot system has control architecture consisting of a master control unit and two slave control units. We confirmed its effectiveness through experiments.

  • PDF

Unified Approach to Path Planning Algorithm for SMT Inspection Machines Considering Inspection Delay Time (검사지연시간을 고려한 SMT 검사기의 통합적 경로 계획 알고리즘)

  • Lee, Chul-Hee;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.788-793
    • /
    • 2015
  • This paper proposes a path planning algorithm to reduce the inspection time of AOI (Automatic Optical Inspection) machines for SMT (Surface Mount Technology) in-line system. Since the field-of-view of the camera attached at the machine is much less than the entire inspection region of board, the inspection region should be clustered to many groups. The image acquisition time depends on the number of groups, and camera moving time depends on the sequence of visiting the groups. The acquired image is processed while the camera moves to the next position, but it may be delayed if the group includes many components to be inspected. The inspection delay has influence on the overall job time of the machine. In this paper, we newly considers the inspection delay time for path planning of the inspection machine. The unified approach using genetic algorithm is applied to generates the groups and visiting sequence simultaneously. The chromosome, crossover operator, and mutation operator is proposed to develop the genetic algorithm. The experimental results are presented to verify the usefulness of the proposed method.

Two-module robotic pipe inspection system with EMATs

  • Lee, Jin-Hyuk;Han, Sangchul;Ahn, Jaekyu;Kim, Dae-Hyun;Moon, Hyungpil
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.1041-1063
    • /
    • 2014
  • This work introduces a two-module robotic pipe inspection system with ultrasonic NDE device to evaluate the integrity of pipe structures. The proposed robotic platform has high mobility. The two module mobile robot platform overcomes pipe obstacle structures such as elbow, or T-branch joints by cooperative maneuvers. Also, it can climb up the straight pipeline at a fast speed due to the wheel driven mechanism. For inspection of pipe structure, SH-waves generated by EMAT are applied with additional signal processing methods. A wavelet transform is implemented to extract a meaningful and specific signal from the superposed SH-wave signals. Intensity ratio which is normalized the defect signals intensity by the maximum intensity of directly transmitted signals in the wavelet transforms spectrum is applied to evaluate defects quantitatively. It is experimentally verified that the robotic ultrasonic inspection system with EMAT is capable of non-destructive inspection and evaluation of defects in pipe structure successfully by applying signal processing method based on wavelet transform.