• Title/Summary/Keyword: Inspection Analysis

Search Result 2,909, Processing Time 0.043 seconds

Car Engine Sealing Inspection System Based on Analysis of Difference Image (차영상 분석 기반의 자동차 엔진 실링상태 검사 시스템)

  • Choi, Sang-Bok;Ban, Sang-Woo;Kim, Ki-Taeg
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.356-367
    • /
    • 2011
  • In this paper, we proposed a new car engine sealing inspection system based on image processing and understanding. The car engine sealing inspection plays very important role for protecting leakage caused by inappropriate sealing, which is a crucial point for productivity of car engines. The proposed inspection system has been aimed to enhance the previously proposed sealing inspection systems based on image processing, which have high computation complexity and low performance for correctly inspecting some contamination by oil with similar color with that of sealing. Moreover, the previously proposed system has a difficulty in installing the camera system on the sealing machine. The proposed system considers a difference of images before and after sealing obtained from one static camera. By utilizing a difference of images, the proposed system shows very robust performance using a proposed simple depth checking algorithm for some contamination cases by oil with similar color with that of sealing and the total inspection system is simple and cheap to implement. According to the experiments conducted in a real car product line, the proposed inspection system shows better inspection performance and needs smaller implementation cost than three other previously proposed system working in current car sealing inspection systems.

A Study on Constructing the RCM-based Failure Analysis System for Railway Facilities & Equipments (RCM 기반 철도시설물 고장분석시스템 구축 - 서울메트로 -)

  • Jung, Kwan-Soo;Seo, Kwang-Hyuk;Lee, Jung-Joo;Nam, Jin-Geun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.881-895
    • /
    • 2011
  • Seoul Metro railway facilities' inspection and maintenance tasks cause failure analysis, but if there is trouble the diverse cause investigation and the systematic analysis and management among broken facilities, related facilities and components fell short and the conditions are different. And, excess and insufficiency, under inspection and maintenance, is being raised regardless of the introduction year and the operating environment including the number of use by applying the same facilities in the uniform inspection cycle. In this study, we will analysis systematically facility system information, failures, operational status, performance, fault and maintenance information resulting from the maintenance management of railway facilities and derive the relationship between associated equipment and its components. In addition, optimizing the inspection and the maintenance cycles of railway facilities, we will improve the reliability of operation. Considering the probability of risk, it is possible to predict the occurrence of accidents or faults and to minimize the frequency of breakdown by pre-inspection maintenance. Finally, This paper is to introduce the content of constructing the Seoul Metro RCM-based failure analysis system for railway facilities to support the optimal continuance of operation status of equipments and the securement of the safe operation of vehicles.

  • PDF

Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis (2차원 푸리에변환과 주성분분석을 기반한 초음파 용접검사의 신호분류기법)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2004
  • Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented.

Development of Expert System for Maintenance of Tunnel (II) (터널의 유지관리를 위한 전문가시스템 개발(II) : 수치해석을 통한 지식베이스 확장)

  • Kim, Do-Houn;Huh, Taik-Nyung;Lim, Yun-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.185-191
    • /
    • 2000
  • The safety problem of aged tunnels has been emphasized. For the effective maintenance, site inspection of tunnel structures and surrounding grounds are required periodically. Also, the determination of safety of tunnels is not a simple problem. So the role experienced engineer in the maintenance is very important and development of an expert system that can perform as the engineers, has been needed. In this study, from the results of numerical analysis in several case, new precision inspection rules which can substitute actual numerical analysis are determined by a commercial program FLAC and regression analysis under various parameters such as material property, lining thickness, overburden and laterial coefficients. They are added to the knowledge base to determine safety of tunnel lining. To verify the expert system, the results are compared with an existing tunnel diagnosis report. It can be concluded that the new rule are well represented the actual numerical analysis under various site conditions. Therefore it is expected that the systematic management for effective maintenance of tunnel structure will be possible.

  • PDF

A Study on the Mathematical Models for determining the Economic Inspection Plan and It's Characteristics (경제적(經濟的) 검사방식(檢査方式)의 채택(採擇)을 위한 계량적(計量的) 접근방법(接近方法)의 유형(類形)과 그 특징(特徵)의 비교(比較))

  • Lee, Sang-Yong
    • Journal of Korean Society for Quality Management
    • /
    • v.7 no.2
    • /
    • pp.17-21
    • /
    • 1979
  • There are many kinds of the mathematical models which are developed for choosing the economic inspection plan. The aim of this paper is to classify these mathematical models, and to examine their characteristics. The mathematical models for choosing the economic inspection plan can be classified into three groups. The first of it is the break-even analysis, the second group of the model is to choose the inspection plan so as to minimize total sampling inspection cost function, and the third group of it is the model to choose the inspection plan which maximize the profit function of the sampling inspection. As a result of examining the characteristics of this classified group of the models the model to choose the inspection plan which minimize total sampling inspection cost is more economical than the other models.

  • PDF

Investment Benefit Analysis of Safety Assessment and Inspection Technologies of Hydrogen Bus Fuel System Using Contingent Valuation Methods (조건부가치측정법을 이용한 수소버스 연료장치 안전성 평가 및 검사기술에 대한 투자 편익 분석)

  • Seohyun, Lim;Jeong Ah, Jang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.43-52
    • /
    • 2022
  • Recently, the government has been expanding the supply of hydrogen vehicles according to the roadmap for vitalizing the hydrogen economy, but is developing safety assessment and inspection technology for the relevant vehicles. This study analyzed the prevention of hydrogen bus accidents' economic effect that arises from the application and development of large-capacity CHSS oil pressure repetition-test assessment technology, hydrogen bus internal chamber pressure transmission and emission volume inspection technology, among various technologies capable of assessing the safety of a hydrogen bus fuel system. To this end, the contingent valuation method (CVM), one of the value evaluation methods of non-market goods, was applied to investigate users' willingness to pay for each inspection technology. The survey for users' willingness to pay was conducted by attaching posters to promote surveys on the internet and within buses to the entire public. As a result of the analysis, the average WTP of the hydrogen bus internal chamber pressure transmission volume inspection technology was 25.3 KRW, the average WTP of the hydrogen bus internal chamber pressure emission volume inspection technology was 18.6 KRW, and the average WTP of the large-capacity CHSS oil pressure repetition-test assessment technology was measured at 16.7 KRW. In addition, the costs and benefits of the introduction of the relevant inspection technology were defined through the interviewing of experts at related research institutions and businesses. As a result of conducting an economic analysis (4.5% discount rate) according to the development of each inspection technology, economic feasibility was seen in all assessment and inspection technologies. As much as the technology is indispensable for the safe use of hydrogen buses, it shows that investment in related technology is very necessary in the future. However, because it was decided that the relevant analysis will differ according to the distribution rate of hydrogen buses, further analysis following this future distribution rate of hydrogen buses is needed, and future users should be made clearly aware of the safety and environmental nature of the technology.

Balance and Effectiveness of Direct Regulations on Manufacturers and Users of Industrial Machines (산업용 기계 제조자와 사용자 대상 직접규제의 균형과 실효성 분석)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • This study first addresses the ineffectiveness of indirect regulation on industrial machines. Analysis of causes of industrial accidents associated with industrial machines further reveals the fact that technical causes need to be resolved at the manufacturing stage to reduce the frequency and strength of industrial accidents. Balanced safety certification on manufacturers and safety inspection on users of industrial machines are then suggested to effectively resolve such technical causes. The effectiveness of such safety certification and safety inspection can be justified by cost-benefit analysis. Particularly, balance in expected benefits of safety certification and safety inspection is a key issue for validity of such analysis. The accumulated benefit-costs for press brake and portable sawing machine confirm the effectiveness of such safety system.

Improvement of Reliability in Cause Analysis of Industrial Accidents (산업재해 원인분석의 신뢰도 제고방안 연구)

  • Choi, Gi Heung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • Safety certification and inspection of dangerous machines and equipments used in industries are to save lives of workers and properties involved. Cause analysis of industrial accidents is essential to prove the effectiveness of such certification and inspection. This study focuses on suggesting systematic method for cause analysis of industrial accidents associated with dangerous machines and devices. Incorporating transition from the current user-oriented indirect regulations to more manufacturer and user balanced direct regulations, suggested method coupled with safety certification, safety inspection, safety management and safety education will guarantee more effective prevention of industrial accidents.

Development of Eyes Inspection Questionnaire(EIQ) and Regression Analysis between EIQ Items and deficiency or excess patterns of Eyes Inspection (안진(眼診) 설문지 개발 및 안진(眼診) 설문의 허실(虛實) 연관성 연구)

  • Seo, Jae-Ho;Choi, Jin-Yong;Oh, Whan-Sup;Park, Young-Bae;Park, Young-Jae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.18 no.2
    • /
    • pp.75-84
    • /
    • 2014
  • Objectives Eyes, one of visual inspection regions, present important clues to pathological patterns including deficiency and excess patterns to the clinicians. The purpose of this study was to develop Eyes Inspection Questionnaire (EIQ) and to examine which items among the EIQ were more predictive of clinicians' determination for the deficiency and excess patterns. Methods Nine questionnaire items for Visual Inspection of Eyes were extracted through the literature review. These items were presented to the 4 Korean medical doctors who are specialized in visual inspection to conduct the Delphi method. The Korean medical doctors were asked to rate the importance of each items for the corresponding Visual Inspection of Eyes, using a Likert 5-point scale(the 3 points of importance as a cut-off point). Then, out of 75 photographs submitted to the Society of HyungSang Medicine in 2009, 30 portrait pictures were selected as samples. The samples were copied to make 60 sample pictures, and then randomly assigned to 4 clinicians. The 4 clinicians evaluated the 60 samples for excess and deficiency of the eyes and were asked to check the 6 questionnaire items. The results were recorded as 5-points-scale, and their average and standard deviations were calculated. Intra- class reliability test and multi regression test were performed using SPSS 13. Results Intra-class correlation coefficient (ICC) was between 0.750 to 0.841 (P<0.05). Indices for visual inspection of the eyes were: endowment of the bone structure around the eyes; brightness of the eyes; upward deviation of the eyes; eye shapes; and definition of iris. 76.92% of deficiency symptom patterns and 86.42% of the excess symptom patterns matched the patterns predicted by the visual inspection of the eyes, according to the frequency analysis. According to the multiple regression analysis, were significantly related to the excessive symptoms, and to the deficiency symptoms. Conclusion This study is the first attempt of development for checklist of excess and deficiency of Visual Inspection of Eyes and quantitative measurement of excess and deficiency using the Visual Inspection of Eyes by the visual inspection experts. Still, additional studies are needed regarding the relationship visual inspection methods have with existing standards of diagnosis.

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 권영주;최석호;김재희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • This paper presents the structural analysis of RIROB(Reactor Inspection Robot). Actually, several analyses such as kinetodynamics analysis, fluid mechanics analysis and structural mechanics analysis etc. should be carried out in the design of RIROB. These analyses are executed through the use of com-puter aided engineering(CAE) systems. The kinetodynamics analysis is carried out using a simple fluid dynamic analysis model for the water flow over the sensor support surface instead of difficult fluid mechanics analysis. Simultaneously the structural mechanics analysis is carried out to obtain the mini-mum thickness of the RIROB housing. The minimum thickness of the RIROB housing is evaluated to be 1.0 ㎝ for the safe design of RIROB. The kinetodynamics analysis of RIROB is performed using ADAMS and the static structural mechanics analysis of RIROB is performed using NISA.