• Title/Summary/Keyword: Insoluble sericin

Search Result 8, Processing Time 0.023 seconds

Enzyme Hydrolysis of Insoluble sericin (불용성 세리신의 효소 가수분해)

  • 김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.2
    • /
    • pp.104-108
    • /
    • 2000
  • To hydrolyze insolule sericin the enzyme hydrolysis was used, and then obtained the results as given belows. When insoluble sericin was hydrolyzed by enzyme treatment, the solubility was best at pH 7, 60$\^{C}$ and was slightly increased both above 2 hours treatment and above 10% of enzyme concentration. As the results of electrophoresis, the distribution of molecular weight of sericin powder obtained by enzyme hydrolysis was very weak and showed in the wide range having no distinguishable band. Average degree of polymerzations (A.D.P.) of sericin hydrolyzed by enzyme were about 4.1∼6.3, average molecular weight were about 470∼730. The whiteness of the sericin powder obtained by enzyme hydrolysis was high and increased slightly with higher treatment concentration of enzyme. As the results of amino acid analysis, the amino acid analysis, the amino acid composition of the sericin powder from the enzyme treatment were similar to which located at near 230$\^{C}$ and 320$\^{C}$. The peak of near 230$\^{C}$ could not been found in the sericin powder obtained by enzyme hydrolysis.

  • PDF

Alkali Hydrolysis of Insoluble Sericin (불용성 세리신의 알칼리 가수분해)

  • 김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.31-35
    • /
    • 2000
  • When insoluble sericin was hydrolyzed by treatment of NaOH solution, the solubility was increased with higher treatment temperature and longer treatment time. Whereas it was decreased in addition of NaHSO$_3$. As the results of electrophoresis in sericin powder obtained by the NaOH treatment, a distinguishable band was not confirmed. Average degree of polymerizations(A.D.P.) of sericin hydrolyzed by NaOH solutions were about 19.6∼22.1 and average molecular weight(M.W.) were about 2,200∼2,500. The longer hydrolysis time increased the whiteness of sericin powder. As the results of amino acid analysis, the contents of Thr., Tyr., and Ser. were decreased in NaOH hydrolysis as compared to HCl hydrolysis. In DSC analysis, thermal deformation and pyrolysis peak located at near 230$\^{C}$ and 320$\^{C}$, respectively.

  • PDF

Acid Hydrolysis of Insoluble Sericin (불용성 세리신의 산 가수분해)

  • Kim, Jeong-Ho;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.41 no.1
    • /
    • pp.48-53
    • /
    • 1999
  • The study was carried out to investigate the effects of hydrolysis conditions such as treatment times and concentrations on the solubility of insoluble sericin using the hydrochloric acid solution. When insoluble sericin was hydrolyzed by HCl solution, the solubility was increased with the higher treatment concentration. As the results of electrophoresis of sericin powder obtained by the HCl treatment, a distinguishable band was not confirmed. Average degree of polymerizations(A.D.P.) of sericin hydrolyzed by HCl solution were about 4.2~5.9 and average molecular weights(M.W.) were about 470~670. The longer hydrolysis time reduced the whiteness of sericin powder. As the results of amino acid analysis, the amino acid compositions of the sericin powder from HCl treatment were sililar to that of insoluble sericin, but Tyr. and Arg. were not detected in the powder obtained by HCl treatment. In DSC analysis, thermal deformation and pyrolysis peak located at near 220$^{\circ}C$ and 330$^{\circ}C$.

  • PDF

Hydrolysis characteristics and applications of silk sericin II. Characteristics of soluble sericin and its application on human skin (실크 세리신의 가수분해 특성과 응용 II. 수용성 세리신의 특성과 피부에의 응용)

  • 김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • This study was carried out to investigate the characteristics of the soluble sericins after degumming and after hydrolysis of insoluble sericin with various enzymes. Physical and chemical characteristics of the soluble sericins were also studied and pack test was conducted. Electro donating ability of the various sericins became higher as high>low>KP>PP>PA. In FT-IR analysis, the band of insoluble sericin at 3,285cm$\^$-1/ was shifted to the lower wavelengths in soluble sericins. The intensity of the amide II band was reduced and shifted to lower wavelengths as a result of hydrolysis. In DSC analysis, all sericins showed endothermic peaks around 200$^{\circ}C$ and insoluble sericin showed another peak at 250$^{\circ}C$. The endothermic peak of the insoluble sericin was found at higher temperature compared with those of the soluble sericins which showed at 300$^{\circ}C$. Whiteness of the various sericins became higher as low>high>PP>PA>PK>IN and yellowness were PK>PA>PP>low>high. In pack test, the skin packed with the non-woven fabric treated with the various sericins was more smooth and less oily.

Enzymatic hydrolysis of insoluble silk sericin by Alcalase

  • Jung, Hye-Young;Bae, Do-Gyu
    • Journal of Sericultural and Entomological Science
    • /
    • v.42 no.1
    • /
    • pp.48-57
    • /
    • 2000
  • This study was undertaken to figure out the effects of hydrolysis conditions on the solubility of insoluble sericin, molecular weight distribution and thermal characteristics of hydrolysates in enzymatic hydrolysis by Alcalase 2.5L. It was indicated that the optimum treatment temperature and pH for the insoluble sericin were 50$\^{C}$ and 11, respectively. When the insoluble sericin was hydrolyzed with a various treatment conditions, the solubility of all hydrolysates were represented above 85% at given conditions. As the enzyme concentration increased, the solubility increased roughly, but the solubility increasement ratio was less above 2% enzyme concentration. As the treatment time increased, the solubility was also increased. It was showed in the molecular weight distribution of hydrolysates treated various enzyme concentrations and treatment times that when enzyme concentrations were 0.5, 2, 3%, the peaks of the distribution curve were shifted to left side which meant low molecular weight and was distributed much quantity with shifted to be left side, but treatment time was 6 hr. the peak was shifted to right side. When enzyme concentration was 5% and treatment time was below 2 hr., the peaks were shifted to right side, but treatment time was above 4hr. the peak was shifted to left side. The number-average molecular weights were distributed from 300 to 800 and those were decreased when treatment time was up to 4 hr., but increased a little when treatment time was 6hr. It was showed in the DSC curves of hydrolysates treated with treatment time of 0.5, 1, 2, 4, 6 hr. fixed 1% o.w.s enzyme concentration and control that the endothermic peak was observed near at 200$\^{C}$. The denaturation peak of the hydrolysates depending on treatment times had a tendency to shift to higher temperature. But, when the treatment time was 6 hr., the peak was shifted to lower temperature comparing another hydrolysates.

  • PDF

Hydrolysis characteristics and applications of silk sericin I. Control of molecular weight of sericin (실크 세리신의 가수분해 특성과 응용 I. 세리신의 분자량 제어)

  • 김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.1
    • /
    • pp.46-57
    • /
    • 2003
  • This study was carried out to investigate the characteristics of the soluble sericins after degumming and after hydrolysis of insoluble sericin with various enzymes. Especially, the hydrolysis characteristics were examined in terms of molecular weight of the soluble sericin. Amino acid composition and molecular weight characteristics of the soluble sericins were also studied. When the insoluble sericin was hydrolyzed with kojizyme and flavourzyme, the solubility was highest at pH 7 and 50$^{\circ}C$. On the other hand, in the cases of protamex and alcalase, the highest solubility was obtained at 60$^{\circ}C$. In these cases, solubility increased with pH. In enzymatic hydrolysis, the solubility was increased with concentration of enzymes until 4 hours. After then, a slight difference was found along with treatment times. In enzymatic hydrolysis, the absorbance of the soluble sericin was increased with concentration of enzymes and treatment times. Average degree of polymerization was decreased with treatment time and concentration. The amino acid compositions were similar in low(low molecular weight by degumming) and high (high molecular weight by degumming). Those of PK (soluble sericin hydrolyzed with kojizyme), PP (soluble sericin hydrolyzed with protamex), and PA(soluble sericin hydrolyzed with alcalase) were similar to each other. Serine and tyrosine compositions were higher in low and high than those of PK, PP, and PA. However proline was absent in low and high. Molecular weights of the various sericins became higher as KP>high>PP>low>PA and those of KP and PA were 9,800 and 905 respectively.

Studies on Sericin Fixation by Use of Alum Meal (명반처리에 의한 견직물개선연구 -Sericin 정착을 중심으로 하여-)

  • 최병희;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.21 no.2
    • /
    • pp.11-19
    • /
    • 1979
  • This has been carried out how the sericin insoluble fixations of raw silk should be with potassium alum. This is learned from the leather tanning technique which the process works with collagen, a kind of proteins. Former reports had shown such works, however, they did not consider the moisture absorbability after their process reports by using chromium alum, formalin or vinyl acetate grafting. This report, however, paid attention to protect such absorbability as well as sericin fixation, so far it may be useful for plactical use of silk. In order to clear how the sericin is fixed with such chemicals, fundermental mechanism of weding process and chemical reaction against proteins were also discussed. The obtained results of the report are as followings. 1. Alum should not be treated for raw silk with high temperature bath like other reports because such treat induces raw silk to be stiffly after the treat. 2. It is recommended that raw silk should be treated with alum solution at room temperature for more than three hours. Even in this case, the use of only alum with raw silk could to fix sericin some how, but it increased the water proofness of the silk. 3. 1% of alum solution was found to be able to fix the sericin of raw silk. 4. In case we consider only sericin fixations, a combination treat of 1% alum for three hours and 0.5% NaOH for ten minutes method showed the best result. 5. In case we consider sericin insoluble fixation and moisture absorbility, the reversive combination of the above process was found to be the best results. 6. Sericin fixing evidence was shown with drying feature curves of wed each treated silk where we could to analyze how the chemical nature is changed after each treat. 7. Deguming ratio may be obtained up to 4.3% after the alum combination treat with regular raw silk. Such ratio was considered to be good enough for the purpose when the textile is washed with warm soap water. 8. Moisture absorbability of the combination treat of alum and NaOH was found to be good enough as well as non treated silk. 9. The tenacity and elongation of the treated silk did not change even after three month. 10. Above all, this method is considered to be better process than other coloured fixing (tannin method. Cr-alum method) or smell fixing (formalin method. vinyl acetate method).

  • PDF

Degumming of Silk by Calcium hydroxide (Calcium Hydroxide에 의한 Silk의 정련)

  • 정양숙;김정호;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.45 no.1
    • /
    • pp.34-45
    • /
    • 2003
  • Silk was treated with calcium hydroxide for degumming at different treatment times, temperatures and Ca(OH)$_2$ concentration to optimize degumming conditions in this thesis. After degumming, soluble and insoluble sericin were seperated and then the soluble sericin was characterized by measuring the average degree of polymerization (D.P.), lysinoalanine (LAL) content, DSC, and by amino acid analysis. And degummed silk fibroin was characterized by measuring tenacity and SEM. Degumming loss was increased by increasing the treatment time and temperature until about 30 minutes. After then, a slight difference was found along with treatment times at the Ca(OH)$_2$ concentrations of 0.07% and 0.1% solutions. After degumming, insoluble sericin ratio on degumming solution was increased by increasing treatment temperature at Ca(OH)$_2$ 0.04% solution. At the concentration Ca(OH)$_2$ of 0.07%, a soluble ratio was almost 100% regardless of treatment time and temperature. At the beginning of treatment, insoluble ratio was high at Ca(OH)$_2$ 0.1% solution but it was decreased by increasing treatment time. At the Ca(OH)$_2$ concentration of 0.04%, D.P. of soluble sericin was maintained as a constant value of 10 at 100$^{\circ}C$ although treatment time was increased. However, at 80$^{\circ}C$ and 90$^{\circ}C$, it was hard to prepare a soluble sericin having a constant D.P. by increasing treatment time. At the Ca(OH)$_2$ concentration of 0.07%, D.P. was almost 10 irrespective of treatment temperature and time. Soluble sericins with high D.P. of 20∼30 were obtained at 0.1% and 100$^{\circ}C$. LAL was not detected in soluble sericin. As the results of amino acid analysis, it showed that Ca(OH)$_2$ degumming reduced the contents of hydroxy amino acids like Ser., Thr. and Tyr. In DSC analysis of soluble sericin, endothermic peak by thermal deformation and pyrolysis showed at 189$^{\circ}C$ and at 299$^{\circ}C$, respectively. The tenacities of degummed silk were 15∼30% lower than that of raw silk. And it was decreased with increasing treatment time. From the morphological study, the thickness of degummed silk fibroin became thinner by increasing degumming loss. The roughness of a silk fibroin surface was appeared as treatment concentration was increased.