• Title/Summary/Keyword: Insoluble collagen

Search Result 30, Processing Time 0.021 seconds

Investigation into the Distribution of Total, Free, Peptide-bound, Protein-bound, Soluble-and Insoluble-Collagen Hydroxyproline in Various Bovine Tissues

  • Siddiqi, Nikhat J.;Alhomida, Abdullah S.
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.154-158
    • /
    • 2003
  • Collagen is a family of proteins which consists of several genetically distinct molecular species and is intimately involved in tissue organization, function, differentiation and development. The purpose of this study was to investigate the concentration of different hydroxyproline (Hyp) fractions viz., total, free, peptide-bound, protein-bound, soluble- and insoluble-collagen hydroxyproline (Hyp) in various bovine tissues. Results showed that liver had the highest concentration of free Hyp followed by kidney, brain, spleen, lungs, muscle and heart. Liver also had the highest concentration of peptide-bound collagen Hyp followed by kidney, heart, spleen, lungs, brain and muscle. The concentration of protein-bound collagen Hyp was highest in the liver, followed by kidney, spleen, lungs, muscle, brain and heart. Total Hyp was highest in the liver, followed by kidney, spleen, brain, heart, muscle and lungs. Liver also had significantly high concentration of collagen as compared to other tissues examined (P<0.001). Spleen had the significantly higher concentration of soluble-collagen Hyp when compared to other tissues (P<0.001). This was followed by heart, muscle, lungs, brain, kidney and liver. Heart had the highest concentration of insoluble-collagen Hyp followed by lungs, kidney, liver, muscle, spleen and brain. The variation among the insoluble-collagen Hyp concentration of heart and muscle, spleen and brain was significant (P<0.001). We speculate that these differences could be due to the variation in turn over of rate of collagen metabolism in this species.

The Flow Behavior of Skin Collagen (피부조직 콜라겐의 유동 특성)

  • Kim, Young-Ho;Park, Eun-Ji;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.576-581
    • /
    • 1995
  • To obtain the basic information for the effective use of collagen, the flow behavior of collagen extracted from skin tissue was studied. The viscosity of collagen varied with sex, age and the kinds of collagen by extraction method. Regardless of the kinds of collagen, the viscosity of collagen extracted from $6{\sim}12$ week old rat was relatively high. In case of the same age, the viscosity showed higher in female than in male rat and in acid soluble collagen than in insoluble collagen. The solution of the collagen showed the characteristics of Bingham plastic and thixotropic fluid, and the viscosity varied distinctly with temperature, pH, ethanol concentration and collagen concentration. As collagen concentration increased to 6%, the consistency of acid soluble- and insoluble collagen showed a tendency to increase linearly(r = 0.972 for acid soluble collagen, r = 0.957 for insoluble collagen). In that range of collagen concentration, the increasing velocity of consistency was higher in acid soluble collagen than in insoluble collagen. The consistency of collagen solution was decreased according to temperature rising. In case of acid soluble collagen, the consistency is decreased abruptly between $30{\sim}40^{\circ}C$. According to pH variation, the consistency of acid soluble collagen showed biphasic phenomenon, though the consistency of insoluble collagen was found not to be influenced by pH. The consistency of acid soluble- and insoluble collagen according to ethanol concentration showed high between $40{\sim}60%$ of ethanol concentration.

  • PDF

Collagen biology for bone regenerative surgery

  • Murata, Masaru
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.321-325
    • /
    • 2012
  • Collagen is widely used for regenerative therapy and pharmaceutical applications as one of the most useful scaffolds. Collagen is the most abundant protein in vertebrates and the natural substrate of various types of animal cells. Bone and dentin are mineralized tissues and almost similar in chemical components. They consist of collagen (18%), non-collagenous proteins (2%), hydroxyapatite (70%) and body fluid (10%) in weight volume. Pepsin-digested, type I collagen (atelocollagen) and heat-denatured collagen (gelatin) are basic collagenous materials for medical use. Demineralized dentin matrix (DDM) and demineralized bone matrix (DBM) belong to acid-insoluble group, and vital tooth-derived DDM is a unique dentin material including cementum and growth factors. In this review, collagen-based materials will be introduced and discussed for bone regenerative surgery.

Purufication and Characterization of Extracellular Collagenase from Vibrio mimicus (Vibrio mimicus 가 생산하는 collagenase의 정제 및 특성)

  • 김용태;김세권
    • Journal of Life Science
    • /
    • v.6 no.4
    • /
    • pp.241-249
    • /
    • 1996
  • A collagenase was isolated from the culture filtrate of Vibrio mimicus (ATCC 33658). The enzyme was purified to homogeneity by ammonium sulfate precipitation and DEAE-Sephadex A-50 chromatography, which an activity recovery of 22%. The molecular weight of the purified enzyme was estimated to be 42 kDa by SDS-polyacrylamide gel electrophoresis and gel filtration, indication a monomer structure. The optimum pH and temperature od the enzyme for insoluble collagen (Type I) were around 7.75 and 28$\circ$C, respectively. Some chelating agents and serine protease inhibitor inactivated the enzyme, but L-cysteine and histidine did not affect the activity. The amino acid composition indicated that the collagenase contained high amounts of amino acid residues of glycine and alanine. The K$_{m}$ and R$_{cat}$/K$_{m}$ values for the collagenase, using insoluble collagen (type I) as substrate, were 2.86 mg/ml and 972.28 U/mg-protein, respectively.

  • PDF

Physicochemical and histopathological parameters of broilers with dorsal cranial myopathy

  • Ana Clara Longhi Pavanello;Fernanda Jessica Mendonca;Thalita Evani Silva Oliveira;Guilherme Bau Torezan;Giovana Wingeter Di Santis;Adriana Lourenco Soares
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.953-961
    • /
    • 2023
  • Objective: This study aimed to investigate the effect of dorsal cranial myopathy (DCM) on chicken meat quality. Methods: Sixty-six Ross 308 AP broilers, 47 days old, of both sexes, weighing about 3.51 kg, were slaughtered according to standard industrial practices, and evaluated for meat color, pH, chemical composition, collagen content, fatty acid profile, and histopathological parameters. Comparisons between normal and DCM-affected meat were performed using Student's t-test at the 5% significance level. Results: Histological analysis of muscle tissues affected by DCM showed myofiber degeneration, proliferation of inflammatory cells, fibroplasia, and necrosis with fibrosis. DCM samples had lower protein content and higher moisture, ash, insoluble collagen, total collagen, and pH. DCM-affected meat was redder and more yellowish. There were no differences in lipid or soluble collagen contents between groups. DCM-affected meat had higher percentages of arachidonic acid (C20:4n-6) and eicosapentaenoic acid (C20:5n-3). Conclusion: This study revealed that DCM-affected meat exhibits considerable changes in quality parameters.

Screening for raw material of modified gelatin in marine animal skins caught in coastal offshore water in Korea (수식 어류껍질 젤라틴의 원료로서 연근해산 수산물껍질의 검색)

  • Cho, Soon-Yeong;Kim, Jin-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.134-139
    • /
    • 1996
  • In order to effectively utilize marine animal skin wastes in marine processing manufacture, conger eel skin, file fish skin and arrow squid skin as raw material of edible gelatin were screened. Conger eel skin was the highest in the collagen content, followed by Ole fish skin and arrow squid skin, in the order named. In the fish skins, the soluble and insoluble collagens occupied $67.4%{\sim}72.3%\;and\;27.7{\sim}32.6%$, respectively, and in the arrow squid skin, 30.4ft and 69.6ft, respectively. No difference in the amino acid composition between soluble and insoluble collagens was detected. Collagen from the marine animal skin catched in coasted and offshore water in Korea consisted ${\alpha}$ chain and ${\beta}$ chain, and ${\alpha}$ chain were hetero type. The sum of proline and hydroxyproline contents in conger eel skin collagen was higher than that in the other skin collagens, while was lower than that pork skin collagen. Conger eel skin collagen exhibited a higher denaturation temperature in solution and a higher degree of proline hydroxylation, compared with skin collagen of the respective species. The physical properties such as gel strength, melting point and gelling point of conger eel skin gelatin were superior to those of file fish skin and arrow squid skin gelatins.

  • PDF

Effects of High Pressure/High Temperature Processing on the Recovery and Characteristics of Porcine Placenta Hydrolysates

  • Lee, Mi-Yeon;Choi, Ye-Chul;Chun, Ji-Yeon;Min, Sang-Gi;Hong, Geun-Pyo
    • Food Science of Animal Resources
    • /
    • v.33 no.4
    • /
    • pp.474-480
    • /
    • 2013
  • This study was performed to investigate the effects of high pressure/high temperature (HPHT) treatment on the recovery efficiency and characteristics of porcine placenta hydrolysates. The placenta hydrolysates were characterized by solubility, free amino acid contents, gel electrophoresis, gel permeation chromatography (GPC) and amino acid composition. Placenta was treated at 37.5 MPa of pressure combined with various temperatures (150, 170, and $200^{\circ}C$) or various holding times (0, 30, and 60 min at $170^{\circ}C$). Insoluble raw placenta collagen was partially solubilized (> 60% solubility) by the HPHT treatment. Free amino group content of placenta collagen was increased from 0.1 mM/g collagen to > 0.3 mM/g collagen after HPHT treatment, reflecting partial hydrolysis of collagen. The molecular weight ($M_w$) distribution showed evidence of collagen hydrolysis by shifting of $M_w$ peaks toward low molecular weight when treated temperature or holding time was increased. Alanine (Ala), glycine (Gly), hydroxyproline (Hyp), and proline (Pro) contents increased after the HPHT treatments compared to a decrease in the others. In particular, the increase in Gly was obvious, followed by Hyp and Pro, reflecting that placenta hydrolysates were mainly composed of these amino acids. However, increasing temperature or holding time hardly affected the amino acid compositions. These results indicate that the HPHT treatment is advantageous to hydrolyze collagen derived from animal by-products.

Differential Scanning Calorimetry of Skin Collagen (피부조직 콜라겐의 DSC 특성)

  • Kim, Young-Ho;Hong, Sang-Pill;Yang, Ryung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.571-575
    • /
    • 1995
  • Transition temperature$(T_m)$ and $enthalpy({\Delta}H)$ were examined by means of DSC to obtain basic information on heat stability of skin tissue collagen. From DSC properties of insoluble collagen on hydration time and moisture content, it was found that moisture content had more effect on structural stability of collagen than hydration time. As moisture content increased, $({\Delta}H)$ increased while $(T_m)$ decreased. DSC properties of acetone dried skin on the variation of age and sex showed higher heat stability in case of male rat and heat stability seemed to be connected with age, as $(T_m)$ and $({\Delta}H)$increased with age. Meanwhile, DSC properties of salt soluble collagen showed higher values in female rat than in male rat, and the $(T_m)$ and $({\Delta}H)$ decreased significantly with age in female rat. These results seemed to suggest indirectly that collagen structure varied with age or sex in the same tissue.

  • PDF

Characteristics of the yellowfin sole and dover sole skins as processing material of gelatin (젤라틴의 원료로서 가자미류 껍질의 성상)

  • Kim, Jin-Soo;Kim, Jeong-Gyun;Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho
    • Applied Biological Chemistry
    • /
    • v.36 no.4
    • /
    • pp.290-295
    • /
    • 1993
  • In order to utilize effectively fish skin from fish processing, characteristics of the yellowfin sole and dover sole skins were investigated. In the yellowfin sole, the crude protein content and yield of fish skin used for the preparation of gelatin were 22.3% and 11.3%, respectively and in the dover sole, 17.2% and 8.9%, respectively. In the yellowfin sole skin, the soluble and insoluble collagen occupied 66.1% and 33.9%, respectively and in the dover sole skin, 78.8% and 21.1%, respectively. No difference in the amino acid composition between soluble and insoluble collagen was detected. The sum of proline and hydroxyproline content in the collagen extracted from fish skin was lower than that of those from pork skin or bone. The molecular weight of the two major subunits from the soluble collagen in the yellowfin sole skin were found to be 143 KDa and 202 KDa. Those in the dover sole skin were 142 KDa and 207 KDa. The physico-chemical properties such as the melting point and gelling point of yellowfin sole skin gelatin were superior to those of dover sole skin gelatin.

  • PDF

Purification and Characterization of Collagenase Produced by Staphylococcus aureus JJ-11 Isolated from the Human Skin (피부에서 분리한 Staphylococcus aureus JJ-11이 생산하는 collagenase의 정제 및 특성)

  • Lee Jin-Kyoung;Kim Hae-Nam;Kang Ho-Young;Jun Hong-Ki
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.245-252
    • /
    • 2006
  • A bacterial strain, identified as Staphylococcus aureus JJ-11, producing collagenase was isolated out of 40 persons having skin troubles. S. aureus JJ-11 produced collagenase optimally in the media containing 1.5%(w/v) gelatin, 1%(w/v) yeast extract, 0.4%(w/v) $K_2HPO_4$, 0.005%(w/v) $NiSO_4{\cdot}6H_2O$ at $37^{\circ}C$ for 18 hrs. The collagenase produced by Staphylococcus aureus JJ-11 was purified at 6.66-folds purity through application of chromatography with Amberlite IRA-900 and Sephacryl S-300 HR columns. The molecular weight of the partially purified enzyme was estimated to be 62 kDa by SDS-PAGE. The protein exhibited optimum enzymatic activity at pH 7.0, and showed a stable activity at pH 4-8. The optimum temperature for collagenase was at $37^{\circ}C$, and activity was maintained upto $40^{\circ}C$. The enzyme activity was slightly elevated in the presence of divalents such as, $Fe^{2+},\;Co^{2+}\;and\;Ba^{2+}$ However, the activity was inhibited in the presence of $Sr^{2+}\;or\;Hg^{2+}$. The inhibition of activity by O-phenanthroline and EDTA suggested that the enzyme may contain metal which is required for activity. The enzyme showed the highest activity when insoluble collagen (type I) was, used as a substrate.