• Title/Summary/Keyword: Inside-out method

Search Result 481, Processing Time 0.029 seconds

A Study on the Improvement of Structure of Urban Transit Vehicle Considering Elevation of Fire Safety (화재안전성 향상을 고려한 도시철도 차량의 구조개선에 관한 연구)

  • Kim Kyu-Joong;Lee Seung-Yong;Lee Kuen-Oh
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.15-20
    • /
    • 2005
  • This is a comparative study where we compare simulation results with model examining the time and direction the fire spreads when it breaks out. Also there is vertical distribution of temperature in carriage where the fire spreads out. This study is about demonstrating how to establish smokeless system in urban vehicle, about its necessity, and about vehicle system restructuring, This study also makes an effort to find more advanced method for efficient fire safety in trains, In existing vehicles, in case of fire, the smoke can't go out when doors are closed and hence it spreads in whole train. Even though the method of using ventilation or exhaust established inside the carriage to throw smoke out is much better than the way of opening end doors in each carriage, this study is trying to do research on second way. Through simulation we see that in second case, even though not as good as the first one, smoke can exit through gates. Even though the first method is better, the second can also be uses to let fire out. We can know that in the first case as the smoke can exit out faster, it provides more safety for people. So this system provides better fire safety condition.

  • PDF

Noise Source Ranking in an Automotive Vehicle Using the Inverse FRF Method (역주파수응답함수를 이용한 자동차 실내 소음 기여도 분석)

  • 전인열;이정권;김병훈;박봉현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.125-129
    • /
    • 2003
  • The identification of location and strength distribution of extended noise sources is important in the practical noise control engineering, especially in the viewpoint of dealing with the inherent nature of noise problem in question. For noise source ranking inside an automotive vehicle, the window method has been mainly used due to its simplicity. However, time and cost drawbacks in the measurement and inaccuracy due to low-frequency tunneling and lack of phase information have been a serious problem in using this method. In this study, the inverse FRF method was employed to carry out the noise source ranking inside an automotive vehicle and it was also used to predict the interior sound pressure with the change of sound insulation materials. As a result, it was found that the source contribution of vehicle panels could be successfully identified in comparison with the window method. The sound pressure at driver's ear position was predicted based on the obtained data and was compared with the measured data. The agreement in spectral trends was acceptable and their difference in level was within 3㏈ above 500㎐.

  • PDF

Vector Base Amplitude Panning Based Noise Control Method for Improving the Amenity in Building Environment (실내 환경에서 쾌적성 향상을 위한 Vector Base Amplitude Panning 기반의 소음제어)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.521-528
    • /
    • 2011
  • A variety of noise control methods have been developed as an interest on noise issues increases. Among them, noise control methods using masking effect, a phenomenon to reduce the ability to notice the unwanted sound by proper sound, to implement a pleasant sound environment have been studied under the name of soundscape. We proposed a novel vector base amplitude panning(VBAP) based noise control method to apply to the building environment. The proposed method could improve the amenity inside the building to reproduce the sounds with excellent masking effect on the incoming path of noise using the control speakers, considering the direction of noise source. The directional masking sounds can be generated by using VBPA technique. To verify the performance of the proposed method, we carried out the subjective test for the degree of amenity according to direction of the masking sound. Subjective test results showed that it is possible to improve the amenity inside the building by controlling the direction of masking sound considering the human's auditory characteristic.

The Production Technology of Surface Fine Grain Steels by Controlled Rolling and Cooling Technology (제어압연에 의한 표면미세립강의 제조 기술)

  • 신정호;박상덕;이정환;이용희;장병록
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.188-197
    • /
    • 1999
  • Grain refinement of the structural steels was selected as the most effective method to meet improvement of strength and toughness without heat treatment. So, the future research and developing direction of ultra fine grain steels are more and more required to response to the production of eco - materials(environmental consciousness - materials) In this paper, the product of surface fine grain steels by CRCT and Inverse Transformation Method by warm deformation of martensite is carried out in order to improve the production process of Dowel Bar. It is possible to obtain surface ultra fine grain steel, when warm deformation of martensite formed after quenching is carried out from 730$^{\circ}C$ to 800$^{\circ}C$ in the finishing rolling step. The characters of surface with ultra fine grain steel is showing the cementite particles inside the ferrite grain and fine ferrite grain of about 1.2$\mu\textrm{m}$ in size.

  • PDF

A CFD Study on the Combustion Pressure Oscillation by a Location of a Pressure Transducer inside Closed Vessel (밀폐용기 연소실험 시 센서위치에 따라 변화하는 압력 진동에 대한 수치적 연구)

  • Han, Doo-hee;Ahn, Gil-hwan;Ryu, Byung-tae;Sung, Hong-gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • A computational fluid dynamics simulation of pyrotechnic material combustion inside a cylindrical closed vessel was carried out using the Eulerian-Lagrangian method. The 5th order upwind WENO scheme and the improved delayed detached eddy turbulence model were implemented to capture shock waves. The flow structure was analyzed inside the cylindrical vessel with a pressure sensor installed at the side wall center. The analysis revealed that the pressure oscillated because of the shock wave vibration. Additionally, the simulation results with four different sensor tab depths implied that, inside the sensor tab, eddies were generated by the excessively large gap between the sensor diaphragm and the side wall. These eddies caused irregularity to the measured time-pressure curve, which is an undesirable characteristic.

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube (수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

Navigation based on Multi Cylindrical Environment Map

  • Park, Youngsup;Hyekyung Ko;Cheungwoon Cho;Kyunghyun Yoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.167.6-167
    • /
    • 2001
  • The cylindrical environment maps of image-based representation methods make high-quality, simple and low-price real-time navigation possible. In this paper, we propose a method to navigate from one viewpoint to the next in the virtual inside space, composed of several cylindrical environment maps. Our system is classified into the two modules. first of all, the panoramic image viewer that employs the rotation and zoom-in/out methods to navigate the virtual inside space, such as the Quicklime VR. The other is smooth real-time navigation using cubic mesh interpolation when the viewpoint moves from one environment map to another in the virtual space.

  • PDF

Flow, Heat and Mass Transfer Analysis for Vertical Grooved Tube Evaporator (흠진 수직 증발관에서 유동 및 열/물질 전달 해석)

  • Park Il-Seouk;Choi Do Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.108-113
    • /
    • 1998
  • A numerical investigation for the flow, heat and mass transfer characteristics of the grooved evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation takes place at the free surface of the inside film. The 3-D transport equations for momentum and energy are solved by using the FVM(Finite Volume Method). The free surface shape is tracked by the moving grid technique satisfying the SCL(Space Conservation Rule). Due to the secondary motion of the fluid, the film thins at the crest, while thickens at the valley. The velocity and temperature fields as well as the amounts of the condensed and evaporated mass have been successfully predicted for various operating conditions and groove shapes.

  • PDF

Numerical Analysis of Flow Path inside the Feedwater Valve (급수밸브 내부의 유동경로 수치해석)

  • Kwag, Seung-Hyun;Won, Yong-Hee
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.416-419
    • /
    • 2006
  • Numerical analysis is carried out to identify the wall thinning effect inside the feed water valve. The finite volume method is applied to make analysis for the viscous flows. The commercial cock FLUENT is used for the simulation and the GAMBIT for the grid generation. The RNG $\kappa-\varepsilon$ model is used for the turbulence and the tet-hybrid grid is applied for the modeling. The velocity vector, the pressure contour, the change of residual along the iteration number, and the dynamic head are predicted for the hydrodynamic investigation.

  • PDF