• Title/Summary/Keyword: Insertion depth

Search Result 144, Processing Time 0.018 seconds

Safe Needling Depth of Pungbu(GV16) with MRI-a Retrospective Study (MRI를 통한 풍부혈(GV16)의 안전 자침 깊이에 대한 연구)

  • Yang, Hyun Jung;Park, Hae In;Lee, Kwang Ho
    • Journal of Acupuncture Research
    • /
    • v.32 no.4
    • /
    • pp.11-16
    • /
    • 2015
  • Objectives : The purpose of this study is to determine the safe needling depth of Pungbu($GV_{16}$) retrospectively by using magnetic resonance imaging (MRI). Methods : We chose 114 Brain or C-spine MRI images from the Sang-Ji hospital picture archiving communication system. We measured the shortest distance from skin to cerebral dura mater passing by posterior edge of the foramen magnum on the sagittal view for the depth of Pungbu. We analyzed the differences between male and female measured values by using a student t-test. Results : The average depth of male insertion was $49.71{\pm}6.32mm$ and the shortest depth of insertion was 36.29 mm. The average depth of female insertion was $39.84{\pm}5.25mm$ and the shortest depth of insertion was 30.02 mm. The results showed a significant difference according to gender (p=0.00). Conclusions : The depth of male insertion is deeper than that of female, and the safe needling depth in the case of males is 36.29-67.35 mm, while the safe needling depth in the of females is 30.02-52.18 mm.

Robotic Needle Insertion Using Corneal Applanation for Deep Anterior Lamellar Keratoplasty (각막 압평을 이용한 로봇 바늘 삽입법: 심부표층각막이식수술에의 적용)

  • Park, Ikjong;Shin, Hyung Gon;Kim, Keehoon;Kim, Hong Kyun;Kyun., Wan
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • This paper describes a robotic teleoperation system to perform an accurate needle insertion into a cornea for a separation between the stromal layer and Descemet's membrane during deep anterior lamellar Keratoplasty (DALK). The system can reduce the hand tremor of a surgeon by scaling the input motion, which is the control input of the slave robot. Moreover, we utilize corneal applanation to estimate the insertion depth. The proposed system was validated by performing the layer separation using 25 porcine eyes. The average depth of needle insertion was 742 ± 39.8 ㎛ while the target insertion depth was 750 ㎛. Tremor error was reduced from 402 ± 248 ㎛ in the master device to 28.5 ± 21.0 ㎛ in the slave robot. The rate of complete success, partial success, and failure were 60, 28, and 12%, respectively. The experimental results showed that the proposed system was able to reduce the hand tremor of surgeons and perform precise needle insertion during DALK.

Joint Characteristics of Spot Friction Stir Welded A 5052 Alloy Sheet (마찰교반 점용접한 A 5052 알루미늄 합금판재의 접합부 특성)

  • Yeon, Yun-Mo;Lee, Won-Bae;Lee, Chang-Yong;Jung, Seung-Boo;Song, Keun
    • Journal of Welding and Joining
    • /
    • v.24 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • In this study, the microstructure and mechanical properties of spot friction stir welded A 5052 alloy were investigated. Especially, the effect of insertion depth of welding tool on microstructural changes and mechanical properties was investigated in order to obtain the optimum spot friction stir welding condition. The lap shear load of spot friction stir welded A 5052 alloy plates showed lower value at the shallowest insertion depth and increased with tool insertion depth. At 1.6mm, the maximum value of 3.35 kN was obtained, and then dropped to lower load when the insertion depth was deeper. Spot friction stir welded joints showed shear fracture mode at shallower insertion depths and fracture mode changed to plug fracture mode as the insertion depth was deeper.

Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets (알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성)

  • Su-Ho An;Young-Keun Jeong
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.

A Study on the Basic Shape of an MF Evaporator (MF증발기 기초 형상 설계에 관한 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2019
  • The evaporator is a key driver of an air conditioning system's efficiency. In this study, we study methods of maximizing the efficiency of a Massey Ferguson (MF) evaporator by measuring how the cooling performance of different shapes vary with temperature. We varied the tube insertion depth as well as the shape of the evaporator's header and tube. When we compare header shapes of "D", "Ellipse", and "Quadrangle" types, we find that the elliptical header creates the smallest pressure loss and the highest temperature difference. Between tube shapes of "Rectangular", "Projection", and "Circular" types, the "Projection" type tube creates the most temperature difference. We also investigated the depth of tube insertion in the header and find that tube insertion of 5 - 10 mm is feasible; we selected the depths of 5, 7, and 10 mm since they corresponded to approximately 30%, 50%, and 70% of the total width of the header. The tube insertion test demonstrated that a tube insertion depth of 7 mm creates the least pressure loss and the highest temperature difference. In conclusion, the optimal evaporator design uses an "Ellipse" type header, "Projection" type tube, and a tube insertion depth between 30 and 50% of the header width.

A Numerical Study on Refrigerant Distribution according to the Insertion Depth of the Distributor-Outlet Pipes in an Air-Conditioning System (공조 시스템 내의 분배기 출구관의 삽입깊이에 따른 유량분포연구)

  • Lee, Hee Won;Park, Il Seouk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.491-496
    • /
    • 2015
  • Generally, the phase of the refrigerants that circulate in air-conditioning systems is repeatedly changed from liquid to gas and from gas to liquid. In vapor-compression refrigeration, the refrigerant at the inlet of the evaporator is in a gas-liquid two-phase state; therefore, to enhance the heat-transfer performance of the evaporator, the even distribution of the refrigerant across multiple passages of the evaporator is essential. Unlike the distribution of a single-phase refrigerant, multi-phase distribution requires further considerations. It is known that the multi-phase distribution at the outlet of the distributor is affected by factors such as the operating condition, the distributor's shape, and the insertion depth of the outlet pipes; here, the insertion depth of the outlet pipes is especially significant. In this study, for a cylindrical distributor with a 90-degree bend entrance and three outlet pipes, the flow uniformity at the outlet pipes was numerically tested in relation to variations of the insertion depth of the outlet pipes.

The effect of the thread depth on the mechanical properties of the dental implant

  • Lee, Sun-Young;Kim, Sung-Jun;An, Hyun-Wook;Kim, Hyun-Seung;Ha, Dong-Guk;Ryo, Kyung-Ho;Park, Kwang-Bum
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • PURPOSE. This study aimed to evaluate the effect of implant thread depth on primary stability in low density bone. MATERIALS AND METHODS. The insertion torque was measured by inserting Ti implants with different thread depths into solid rigid polyurethane blocks (Sawbones) with three different bone densities ($0.16g/cm^3$, $0.24g/cm^3$, and $0.32g/cm^3$). The insertion torque value was evaluated with a surgical engine. The static compressive strength was measured with a universal testing machine (UTM) and the Ti implants were aligned at $30^{\circ}$ against the loading direction of the UTM. After the static compressive strength test, the Ti implants were analyzed with a Measurescope. RESULTS. The Ti implants with deeper thread depth showed statistically higher mean insertion torque values (P<.001). Groups A and group B had similar maximum static compressive strengths, as did groups C and D (P>.05). After the static compressive strength, the thread shape of the Ti implants with deeper thread depth did not show any breakage but did show deformation of the implant body and abutment. CONCLUSION. The implants with deeper thread depth had higher mean insertion torque values but not lower compressive strength. The deep threads had a mechanical stability. Implants with deeper thread depth may increase the primary stability in areas of poor quality bone without decreasing mechanical strength.

Effect of scratches on optical connector interface surface on the insertion loss (광 커넥터 접합면의 스크래치가 삽입손실에 미치는 영향)

  • 윤영민;윤정현;김부균;신영곤;송국현
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • This paper presents the effect of scratches on an optical connector interface surface on the insertion loss of optical connectors. We propose a model for calculating the insertion loss of optical connectors. The model is expressed in terms of geometrical parameters of scratches assuming that the transmission coefficient of a light wave on the scratch surfaces is linearly varied as a function of scratch depth. Geometrical parameters of scratches such as location, width, and depth of scratches are measured using 3D optical interferometry surface profiler. We obtain the equation of the transmission coefficient in terms of scratch depth comparing the experimental insertion loss data to the insertion loss data using the model presented in this paper. Using the model and the equation of the transmission coefficient presented in this paper, we present the results of the insertion loss of optical connectors for various geometrical parameters of scratches. Scratches which are located at longer than two times the core radius from the center of the core show negligible effect on the insertion loss of optical connectors.

Insertion Loss Analysis According to the Structural Variant of Interposer (인터포저의 디자인 변화에 따른 삽입손실 해석)

  • Park, Jung-Rae;Jung, Cheong-Ha;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.97-101
    • /
    • 2021
  • In this study, Insertion loss according to the structural variant of interposer to Through Silicon Via (TSV) and Redistributed Layer (RDL) was studied through design of experiment. 3-Factors was considered as a variant, TSV depth, TSV diameter, RDL width with factor arrangement method and the response surface method from 400 MHz to 20 GHz. As a result, it was confirmed that as the frequency increased, the effect of RDL width was decreased and the effect of TSV depth and TSV diameter was increased. Also within the analysis range, to increasing RDL width, decreasing TSV depth, and fixing TSV diameter about 10.7 ㎛ was observed optimal result of Insertion loss.

The Depth and Angle during Caudal Epidural Approach in Adult (성인에서 미추부 경막외강의 깊이와 각도)

  • Jo, Dae-Hyun;Kim, Myoung-Hee;Choy, Yoon-Keun
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.207-210
    • /
    • 2001
  • Backgroud: Caudal blocks have been used for pain management in outpatient clinics. It is important to estimate the proper depth and angle in order to increase the success rate of the procedure. Methods: Data was collected from 60 patients who visited our pain clinic. We measured the depth of the needle's penetration and the angle of the needle at the insertion point when a caudal approach was confirmed by air flow method. We recorded age, sex, body weight and height, and calculated the ponderal index. Results: The depth from the skin to the caudal epidural space was a mean 2-4 cm ($3{\pm}0.4\;cm$). The angle at the needle insertion point was a mean 15-50 degree ($34.9{\pm}6.8$ degree). Conclusions: If we use the mean depth and angle as a guide, complications during the caudal epidural procedure can be avoided.

  • PDF