• 제목/요약/키워드: Insect-insect interaction

검색결과 37건 처리시간 0.019초

멸구류(類)(벼멸구 및 흰등멸구)와 수도병해(水稻病害)의 복합발생피해(複合發生被害)에 관(關)한 연구(硏究) (Relationship between Planthoppers (Nilaparvata lugens and Sogatella furcifera) and Rice Diseases)

  • 이승찬;D.M. 마티아;T.W. 뮤우;J.S. 소리노;E.A. 하인리크
    • 한국응용곤충학회지
    • /
    • 제24권2호
    • /
    • pp.65-70
    • /
    • 1985
  • 수도(水稻) 병해충(病害蟲)의 동시발생(同時發生) 피해(被害)에 관한 연구(硏究)를 위한 기초시험(基礎試驗)으로 벼멸구와 흰등멸구의 복합발생(複合發生)에 따른 서식처선호성(棲息處選好性)을 확인(確認)코저 감수성(感受性) 품종(品種)인 IR22와 저항성(抵抗性)인 IR36(분벽최성기(分蘗最盛期)부터 흰등멸구에도 저항성(抵抗性)임)을 공시(供試)하여 조사(調査)한 결과(結果) 벼품종별(品種別), 생육시기별(生育時期別) 및 발생밀도(發生密度)에 따라 다소(多少) 차이(差異)는 있으나 일반적(一般的)으로 흰등멸구는 대부분(大部分) 벼 윗부분(部分)에 서식(棲息)하였고 벼멸구는 아래부분(部分)에 서식(棲息)함을 알 수 있었다. 두 종(種)의 복합발생시(複合發生時)의 서식선호성(棲息選好性)은 상대종(相對種)의 발생(發生)에 영향(影響)을 받지 않았고 각각 일정(一定)한 서식처(棲息處)를 선호(選好)하는 경향(傾向)이었다. 벼멸구의 생태형(生態型) 2에 대(對)하여 반응(反應)이 다른 다섯가지 품종(品種)(IR22 및 TN1: 감수성(感受性), Triveni 및 ASD7: 중정도저항성(中程度抵抗性), IR42: 抵抗性)을 공시(供試)하여 문고병(紋枯病)과 벼멸구의 동시발생(同時發生)에 의한 피해(被害)를 조사(調査)한 결과(結果) 병해충(病害蟲)의 동시발생(同時發生) 피해(被害)는 병원균(病原菌)이 단독발생(單獨發生)했을 때 보다 문고병(紋枯病)의 발병(發病)을 현저(顯著)히 조장(助長)시켰으며 병증(病症)의 발현속도(發現速度)도 빨랐고 균계생장(菌系生長)도 왕성(旺盛)하여 감염기(感染器)(infection structure)의 형성(形成)도 풍부(豊富)하였다. 벼멸구의 생태형(生態型) 2에 대(對)한 품종(品種) 반응(反應)과는 상관없이 벼멸구와 문고병(紋枯病)과의 동시발생(同時發生)은 벼멸구 단독발생(單獨發生)에 비(比)하여 더 심한 고사현상(枯死現象)(hopperburn)을 일으켰다. 즉 문고병(紋枯病) 병원균(病原菌)과 벼멸구의 동시발생(同時發生)은 상승적(相乘的) 피해(被害)가 나타남을 확인(確認)하였다.

  • PDF

Activated Phenoloxidase Interacts with A Novel Glycine-rich Protein on the Yeast Two-hybrid System

  • Lee, Sun-Woo;Lee, Hyun-Seong;Kim, Eun-Jun;Yoo, Mi-Ae;Lee, Bok-Luel
    • BMB Reports
    • /
    • 제34권1호
    • /
    • pp.15-20
    • /
    • 2001
  • One of the innate immune reactions in invertebrates is the pro-phenoloxidase (pro-PO) activation system that is involved in the generation of superoxide, melanin synthesis, and the subsequent sequestration of foreign matter entering the hemocoel of the invertebrates. However, the molecular mechanism of this biological reaction is still obscure. To expand our understanding of the biological roles of the pro-PO activation system in invertebrates, we performed a yeast two-hybrid screening by using three regions of pro-PO as bait and a yeast two-hybrid cDNA library from Tenebrio molitor larvae as prey We isolated a novel partial cDNA clone that encodes a glycine-rich protein that interacted with the active phenoloxidase (termed phenoloxidase interacting protein, POIP). POIP consists of two domains: One is an N-terminal unique domain and the other is a C-terminal glycine-rich domain. The C-terminal glycine-rich domain showed sequential homology with those of insect antifungal proteins. Also, the yeast two-hybrid screen in a reverse orientation (using POIP as bait) yielded PO, suggesting that the PO-POIP interaction is specific. By using a 315 bP PCR fragment of the N-terminal unique region of POIP, we cloned the full-length cDNA of POIP from the Tenebruo cDNA library constructed by using E. coli injected larvae. The interaction analysis between PO, and a truncated fragment lacking the N-terminal unique region of POIP, indicated that the N-terminal unique region is necessary for interaction between PO and POIP. The expression level of the POIP mRNA is increased by bacterial injection into T. molitor larvae. This suggests that POIP might be engaged in the humoral defense reaction.

  • PDF

Insect Adaptations to Changing Environments - Temperature and Humidity

  • Singh, Tribhuwan;Bhat, Madan Mohan;Khan, Mohammad Ashraf
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제19권1호
    • /
    • pp.155-164
    • /
    • 2009
  • The most important factors in environment that influence the physiology of insects are temperature and humidity. Insects display a remarkable range of adaptations to changing environments and maintain their internal temperature (thermoregulation) and water content within tolerable limits, despite wide fluctuations in their surroundings. Adaptation is a complex and dynamic state that widely differs in species. Surviving under changing environment in insects depends on dispersal, habitat selection, habitat modification, relationship with ice and water, resistance to cold, diapause and developmental rate, sensitivity to environmental signals and syntheses of variety of cryoprotectant molecules. The mulberry silkworm (Bombyx mori) is very delicate and sensitive to environmental fluctuations and unable to survive naturally because of their domestication since ancient times. Thus, the adaptability to environmental conditions in the silkworm is quite different from those of wild insects. Temperature, humidity, air circulation, gases and photoperiod etc. shows a significant interaction in their effect on the physiology of silkworm depending upon the combination of factors and developmental stage affecting growth, development, productivity and quality of silk. An attempt has been made in this article to briefly discuss adaptation in insects with special emphasis on the role of environmental factors and their fluctuations and its significance in the physiology of mulberry silkworm, B. mori.

Transcriptome Analysis of the Small Brown Planthopper, Laodelphax striatellus Carrying Rice stripe virus

  • Lee, Joo Hyun;Choi, Jae Young;Tao, Xue Ying;Kim, Jae Su;Kim, Woojin;Je, Yeon Ho
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.330-337
    • /
    • 2013
  • Rice stripe virus (RSV), the type member of the genus Tenuivirus, transmits by the feeding behavior of small brown planthopper (SBPH), Laodelphax striatellus. To investigate the interactions between the virus and vector insect, total RNA was extracted from RSV-viruliferous SBPH (RVLS) and non-viruliferous SBPH (NVLS) adults to construct expressed sequence tag databases for comparative transcriptome analysis. Over 30 million bases were sequenced by 454 pyrosequencing to construct 1,538 and 953 of isotigs from the mRNA of RVLS and NVLS, respectively. The gene ontology (GO) analysis demonstrated that both libraries have similar GO structures, however, the gene expression pattern analysis revealed that 17.8% and 16.8% of isotigs were up- and down-regulated significantly in the RVLS, respectively. These RSV-dependently regulated genes possibly have important roles in the physiology of SBPH, transmission of RSV, and RSV and SBPH interaction.

멸구 매미충류에 대한 약제저항성의 유전성에 관한 연구 I. 애멸구의 MEP제에 대한 약제저항성의 유전적 특성 (Inheritance of Insecticide Resistance to Plant- and Leaf-hoppers Inherited Properties of MEP Resistance to Small Brown Plant-hopper (Laodelphax striatellus Fallen))

  • 심재욱
    • 한국응용곤충학회지
    • /
    • 제17권2호
    • /
    • pp.75-80
    • /
    • 1978
  • 본 시험은 애멸구의 MEP제에 대한 저항성이 유전적 특성에 기인된 것인지를 알아보기 위하여 나주지역의 야외집단을 채집하여 감수성인 실험실 계통과 교배하고 $F_1,\;BC_1F_1$$F_3$에 대하여 Probit 법으로 분석하고 $LD_{50}$을 비교한 결과는 다음과 같다. 1. 나주지역의 애멸구 야외집단은$LD_{50}$이 자충충의 경우 0.0029ug/충으로 감수성인 실험실계통의0.0008ug/충에 비하여 저항성의 차를 타나내었다. 2. 나주지역 야외집단이 나타내는 저항성은 $F_1$$BC_1F_1$ 의 분석에서$LD_{50}$ 및 사충율의 회귀가 저항성인 친쪽으로 가깝게 나타나는 경향을 보여 유전적 특성에 기인된다고 생각되었다. 3. $F_2$ 집단의$LD_{50}$은 양친의 중간 정도였으며 넓은 분산을 보이고 있어 MEP제에 대한 저항성의 유전은 수개의 유전자가 관여할 것으로 생각되었다.

  • PDF

곤충의 의사소통: 개념, 채널 및 상황 (Insect Communication: Concepts, Channels and Contexts)

  • 장이권
    • 한국응용곤충학회지
    • /
    • 제50권4호
    • /
    • pp.383-393
    • /
    • 2011
  • 의사소통은 생존과 번식을 위해 필요한 행동을 가능하게 하기 때문에 행동과 진화연구에 중추적이다. 동물의 신호와 관련하여 가장 중요하고 어려운 문제 중의 하나는 의사소통의 정의이다. 넓게 봐서 의사소통은 신호자로부터 수신자로의 정보제공이다. 그러나 신호의 진화는 정보교환으로 신호자와 수신자 모두 적합도가 증가할 때만 가능하다. 이것을 '참의사소통'이라한다. 동물들이 의사소통할 때 감각채널로 흔히 화학물질, 빛, 소리를 이용한다. 화학신호를 이용한 의사소통은 가장 오래되고, 거의 모든 동물들이 사용하는 방법이다. 변조의 용이, 신호생산의 유연성, 빠른 전송 때문에 빛 과 소리를 이용한 의사소통은 보다 많은 양의 정보를 전달할 수 있다. 교미행동과 충돌해결은 동물들이 의사소통하는 가장 흔한 상황이다. 교미행동에 사용되는 신호는 보통 종에 대한 정보와 성적 매력도에 대한 정보를 담고 있으며, 충돌해결에 사용되는 정보는 신호자의 싸움능력에 대한 정보를 담고 있다. 이외에도 동물들이 의사소통하는 상황은 영역방어, 부모자식 상호작용, 사회통합, 환경정보 공유, 자기의사 소통을 포함한다.

Parasitic Behaviour of Xanthopimpla pedator Fabricius (Hymenoptera: Ichneumonidae) on Tropical Tasar Silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) Reared on Seven Forestry Host Plants in Uttarakhand, India

  • Bhatia, Narendra Kumar;Yousuf, Mohammad
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제27권2호
    • /
    • pp.243-264
    • /
    • 2013
  • Antheraea mylitta Drury is a commercial silk producing forest insect in India and Xanthopimpla pedator Fabricius is its larval-pupal endoparasitoid, which causes pupal mortality that affects seed production. Effects of host plants, rearing season and their interactions on parasitic behaviour of X. pedator were studied here, as influence of these factors on biological success of X. pedator is not known. Seven forest tree species were tested as food plants for A. mylitta, and rate of pupal parasitization in both the rearing seasons were recorded and analysed. Results showed that rearing season and host plants significantly affected the rate of pupal parasitization in both the sexes. Pupal mortality was found significantly higher (14.52%) in second rearing season than the first (2.89%). Likewise, host plants and rearing seasons significantly affected length, diameter, and shell thickness of cocoons in both sexes. Out of all infested pupae, 85.59% were found male, which indicated that X. pedator chooses male spinning larva of A. mylitta for oviposition, but we could not answer satisfactorily the why and how aspect of this sex specific parasitic behaviour of X. pedator. Multiple regression analysis indicated that length and shell thickness of male cocoons are potential predictors for pupal parasitization rate of X. pedator. Based on highest cocoon productivity and lowest pupal mortality, Terminalia alata, T. tomentosa, and T. arjuna were found to be the most suitable host plants for forest based commercial rearing of A. mylitta in tropical forest areas of Uttarakhand state, where it has never been reared earlier. Sex and season specific interaction of X. pedator with its larval-pupal host, A. mylitta is a novel entomological study to find out explanations for some of the unresolved research questions on parasitic behaviour of X. predator that opens a new area for specialised study on male specific parasitization in Ichneumonidae.

A Rare Stinkhorn Fungus Itajahya rosea Attract Drosophila by Producing Chemical Attractants

  • Borde, Mahesh;Kshirsagar, Yogesh;Jadhav, Reshma;Baghela, Abhishek
    • Mycobiology
    • /
    • 제49권3호
    • /
    • pp.223-234
    • /
    • 2021
  • Itajahya rosea was found growing in association with Leucaena leucocephala plants at Savitribai Phule Pune University campus in India. The species identity was confirmed by phylogenetic analysis based on ITS and LSU regions of rDNA, wherein, our fugus was placed along with I. rosea in phylogenetic tree. It represents first record of I. rosea from India. Frequent visitation by Drosophila species on I. rosea fruiting body particularly on gleba was observed. The Drosophila got attracted to the detached gleba under the laboratory conditions and even sometimes, they prefer to sit over the gleba as compare to their food banana. It suggested that I. rosea gleba or pseudostipe produces some compounds for attraction and feeding behavior of Drosophila species. Therefore, we characterized the volatile attractants produced by gleba and pseudostipe of I. rosea by GC-MS analysis. Nineteen compounds were identified from gleba while nine compounds were recovered from the pseudostipe. Out of them, blends of three abundant odor producing volatile compounds were reported namely, Hexadecane, Pentadecane and Nonadecane, which are responsible for attraction of Drosophila toward the gleba. Three fatty acids namely 9,12-octadecadienoic acid (Z,Z), hexadecanoic acid and benzoic acid ethyl ester produced are served as an appetitive signal through olfactory response of Drosophila, so the flies were feed on the gleba. Two pheromones' compounds, heneicosane and (+)-(5S,9S)-5,9-dimethylpentadecane, were also reported in pseudostipe and gleba, respectively, which play a role in Drosophila for breeding. Our study highlights an intriguing chemical ecology of fungus-Drosophila interaction.

Effects of forestry host plants, rearing seasons and their interaction on cocoon productivity of tropical tasar silkworm, Antheraea mylitta in uttarakhand

  • Bhatia, N.K.;Yousuf, Mohd.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제30권2호
    • /
    • pp.31-39
    • /
    • 2015
  • Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a commercial silk producing forest insect of India, but it has never been experimented in Uttarakhand state in spite of the huge availability of its forestry host plants. This is the first study on A. mylitta in Uttarakhand. The goal of this study is to introduce forest based commercial rearing of A. mylitta, in tropical forest areas of Uttarakhand to reduce poverty among forest dependent people. In current study, we assessed the effect of seven forest tree species, rearing seasons, and their interactions on cocoon productivity of Daba (bivoltine) ecorace of A. mylitta in the New Forest of FRI, Dehra Dun during 2012 and 2013 and collected the data that was analysed by two-way completely randomized block factorial design. Post HOC Tukey's HSD test was carried out to compare the homogeneous pairs of means. We also carried out Evaluation Index analysis to rank the tested forestry host plants for better growth and development of A. mylitta under the climatic condition of Uttarakhand. Analysis of variance indicated that cocoon yield of A. mylitta differed significantly between rearing seasons (DF=1, F=88.24, p<0.05) and host plants (DF 6, F= 368.63, p<0.05); however, their interactions were found insignificant (DF=6, F=0.99, p>0.05). In first rearing season of July-August, there was higher cocoon yield than the second season of September-November. Results indicated that Terminalia alata fed larvae showed significantly higher cocoon yield (164.11 cocoons/300 larvae); followed by, T. tomentosa (148.89 cocoons), T. arjuna (140.00 cocoons) and Lagerstroemia speciosa (129.47 cocoons) fed larvae. Whereas, Lagerstroemia tomentosa fed larvae that was used by the first time in India, showed lowest cocoon yield (48.81 cocoons), followed by T. chebula (72.53 cocoons) fed larvae. Cocoon yield of T. tomentosa and T. arjuna fed larvae of A. mylitta did not differ significantly with each other.

균근연구(菌根硏究)의 농림업(農林業)에의 응용(應用) (Application of Mycorrhizal Research to Agriculture and Forestry)

  • 이경준;이돈구;이원규;구창덕
    • 한국산림과학회지
    • /
    • 제59권1호
    • /
    • pp.121-142
    • /
    • 1983
  • Recently mycorrhizal research has been one of the most fast-growing research areas in modern plant science and microbiology. The application potential of mycorrhizal techniques to agriculture and forestry is enormous in view of the ubiquitous nature of mycorrhizae and known benefits of mycorrhizae to host plants. Unfortunately, very few scientists in Korea are currently involved in mycorrhizal research. When a team of American plant pathologists visited Korea in September 1982 to participate in the Korea-U.S.A. Joint Seminar on Forest Diseases and Insect Pests, they were surprised by the principal author's statement that there was no single research project on mycorrhizae sponsored by Korean government or any scientific institutions. The author initiated a few years ago a research project on the ecology of tree mycorrhizae with a foreign financial support. Major areas of interest were survey of ectomycorrhizae in relation to soil fertility, taxonomic distribution of mycorrhizae among woody plants, identification of ectomycorrhizal fungi, and growth response of woody plants to artificial inoculation. In spite of the enormous application potential of mycorrhizae to agronomic plants, the subject of mycorrhizae has not been recognized by Korean agronomists, foresters or pathologists. The purpose of this review rather written in Korean is to introduce the techniques of mycorrhizal research to Korean scientists and to urge them to participate in challenging new scientific field which might bring us a remarkable increase in crop productivity and tree growth through manipulation of this unique symbiosis. In this review, following topics were discussed in the same order: introduction; brief history of mycorrhizal research; morphology and classification of mycorrhizae; distribution of mycorrhizae in plant kingdom and in soil profile; physiology of mycorrhizae (functions, mineral nutrition, mycorrhizal formation); interaction of mycorrhizae with soil-born plant pathogens. mycorrhizae in nitrogen-fixing plants; application of mycorrhizal techniques to nursery practices (isolation, culture, inoculation, and response); prospect in the future.

  • PDF