DOI QR코드

DOI QR Code

Transcriptome Analysis of the Small Brown Planthopper, Laodelphax striatellus Carrying Rice stripe virus

  • Lee, Joo Hyun (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Jae Young (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Tao, Xue Ying (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Jae Su (Department of Agricultural Biology, College of Agricultural Life Sciences, Chonbuk National University) ;
  • Kim, Woojin (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Je, Yeon Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2013.01.04
  • Accepted : 2013.03.07
  • Published : 2013.09.01

Abstract

Rice stripe virus (RSV), the type member of the genus Tenuivirus, transmits by the feeding behavior of small brown planthopper (SBPH), Laodelphax striatellus. To investigate the interactions between the virus and vector insect, total RNA was extracted from RSV-viruliferous SBPH (RVLS) and non-viruliferous SBPH (NVLS) adults to construct expressed sequence tag databases for comparative transcriptome analysis. Over 30 million bases were sequenced by 454 pyrosequencing to construct 1,538 and 953 of isotigs from the mRNA of RVLS and NVLS, respectively. The gene ontology (GO) analysis demonstrated that both libraries have similar GO structures, however, the gene expression pattern analysis revealed that 17.8% and 16.8% of isotigs were up- and down-regulated significantly in the RVLS, respectively. These RSV-dependently regulated genes possibly have important roles in the physiology of SBPH, transmission of RSV, and RSV and SBPH interaction.

Keywords

References

  1. Alvarado, V. and Scholthof, H. B. 2009. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin. Cell Dev. Biol. 20:1032-1040. https://doi.org/10.1016/j.semcdb.2009.06.001
  2. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., Sherlock, G. and Consortium, G. O. 2000. Gene ontology: Tool for the unification of biology. Nat. Genet. 25: 25-29. https://doi.org/10.1038/75556
  3. Falk, B. W. and Tsai, J. H. 1998. Biology and molecular biology of viruses in the genus tenuivirus. Annu. Rev. Phytopathol. 36:139-163. https://doi.org/10.1146/annurev.phyto.36.1.139
  4. Hamamatsu, C., Toriyama, S., Toyoda, T. and Ishihama, A. 1993. Ambisense coding strategy of the Rice stripe virus genome: In vitro translation studies. J. Gen. Virol. 74(Pt 6):1125-1131. https://doi.org/10.1099/0022-1317-74-6-1125
  5. Hayano, Y., Kakutani, T., Hayashi, T. and Minobe, Y. 1990. Coding strategy of Rice stripe virus: Major nonstructural protein is encoded in viral RNA segment 4 and coat protein in RNA complementary to segment 3. Virology 177:372-374. https://doi.org/10.1016/0042-6822(90)90493-B
  6. Hemmes, H., Kaaij, L., Lohuis, D., Prins, M., Goldbach, R. and Schnettler, E. 2009. Binding of small interfering RNA molecules is crucial for RNA interference suppressor activity of Rice hoja blanca virus ns3 in plants. J. Gen. Virol. 90:1762-1766. https://doi.org/10.1099/vir.0.010488-0
  7. Hemmes, H., Lakatos, L., Goldbach, R., Burgyan, J. and Prins, M. 2007. The ns3 protein of Rice hoja blanca tenuivirus suppresses RNA silencing in plant and insect hosts by efficiently binding both sirnas and mirnas. RNA 13:1079-1089. https://doi.org/10.1261/rna.444007
  8. Hibino, H. 1996. Biology and epidemiology of rice viruses. Annu. Rev. Phytopathol. 34:249-274. https://doi.org/10.1146/annurev.phyto.34.1.249
  9. Hibino, H., Usugi, T., Omura, T., Tsuchizaki, T., Shohara, K. and Iwasaki, M. 1985. Rice grassy stunt virus - a planthopperborne circular filament. Phytopathology 75:894-899. https://doi.org/10.1094/Phyto-75-894
  10. Hogenhout, S. A., Ammarel, D., Whitfield, A. E. and Redinbaugh, M. G. 2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327-359. https://doi.org/10.1146/annurev.phyto.022508.092135
  11. Ishikawa, K., Omura, T. and Hibino, H. 1989. Morphologicalcharacteristics of Rice stripe virus. J. Gen. Virol. 70:3465-3468. https://doi.org/10.1099/0022-1317-70-12-3465
  12. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. 2004. The kegg resource for deciphering the genome. Nucleic Acids Res. 32:D277-D280. https://doi.org/10.1093/nar/gkh063
  13. Krebs, R. A. 1999. A comparison of hsp70 expression and thermotolerance in adults and larvae of three drosophila species. Cell Stress Chaperon. 4:243-249. https://doi.org/10.1379/1466-1268(1999)004<0243:ACOHEA>2.3.CO;2
  14. Ling, K. C. 1972. Rice virus diseases. Los Banos, Philippines: International rice research institute.
  15. Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L. and Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 5:621-628. https://doi.org/10.1038/nmeth.1226
  16. Nault, L. R. and Ammar, E. 1989. Leafhopper and planthopper transmission of plant-viruses. Annu. Rev. Entomol. 34:503-529. https://doi.org/10.1146/annurev.en.34.010189.002443
  17. Ng, J. C. and Falk, B. W. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 44:183-212. https://doi.org/10.1146/annurev.phyto.44.070505.143325
  18. Pfaffl, M. W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45. https://doi.org/10.1093/nar/29.9.e45
  19. Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M. and Nyren, P. 1996. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242:84-89. https://doi.org/10.1006/abio.1996.0432
  20. Sorensen, J. G., Kristensen, T. N. and Loeschcke, V. 2003. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6:1025-1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x
  21. Takahashi, M., Toriyama, S., Hamamatsu, C. and Ishihama, A. 1993. Nucleotide sequence and possible ambisense coding strategy of Rice stripe virus RNA segment 2. J. Gen. Virol. 74:769-773. https://doi.org/10.1099/0022-1317-74-4-769
  22. Tong, Z. G., Gao, Z. H., Wang, F., Zhou, J. and Zhang, Z. 2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC. Mol. Biol. 10:71. https://doi.org/10.1186/1471-2199-10-71
  23. Toriyama, S. 1986. Rice stripe virus: Prototype of a new group of viruses that replicate in plants and insects. Microbiol. Sci. 3: 347-351.
  24. Toriyama, S., Takahashi, M., Sano, Y., Shimizu, T. and Ishihama, A. 1994. Nucleotide sequence of RNA 1, the largest genomic segment of Rice stripe virus, the prototype of the tenuiviruses. J. Gen. Virol. 75:3569-3579. https://doi.org/10.1099/0022-1317-75-12-3569
  25. Walsh, D. and Mohr, I. 2011. Viral subversion of the host protein synthesis machinery. Nat. Rev. Microbiol. 9:860-875. https://doi.org/10.1038/nrmicro2655
  26. Zhu, Y., Hayakawa, T. and Toriyama, S. 1992. Complete nucleotide sequence of RNA 4 of Rice stripe virus isolate t, and comparison with another isolate and with Maize stripe virus. J. Gen. Virol. 73:1309-1312. https://doi.org/10.1099/0022-1317-73-5-1309
  27. Zhu, Y., Hayakawa, T., Toriyama, S. and Takahashi, M. 1991. Complete nucleotide sequence of RNA 3 of Rice stripe virus: An ambisense coding strategy. J. Gen. Virol. 72:763-767. https://doi.org/10.1099/0022-1317-72-4-763

Cited by

  1. RNA interference of E75 nuclear receptor gene suppresses transmission of rice stripe virus in Laodelphax striatellus vol.20, pp.4, 2017, https://doi.org/10.1016/j.aspen.2017.08.011
  2. Comparative Transcriptome Analysis to Reveal Genes Involved in Wheat Hybrid Necrosis vol.15, pp.12, 2014, https://doi.org/10.3390/ijms151223332
  3. Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies vol.7, 2016, https://doi.org/10.3389/fmicb.2016.00089
  4. Organ-specific transcriptome response of the small brown planthopper toward rice stripe virus vol.70, 2016, https://doi.org/10.1016/j.ibmb.2015.11.009