• 제목/요약/키워드: Insect tissue

검색결과 48건 처리시간 0.023초

Analysis of Hemocyte-specific Gene Expression from Bombyx mori

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong-Ryul;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제23권1호
    • /
    • pp.137-141
    • /
    • 2011
  • A previous data was provided information for tissuespecific expression genes by means of whole-genome oligonucleotide microarray in the silkworm. We analyzed the tissue-specific expression patterns in the hemocyte tissue on 5 days of 5th instar larvae during the development of $B.$ $mori$. Total 5 candidates pick out from the $Bombyx$ $mori$ Microarray Database (BmMDB; http://silkworm.swu.edu.cn/microarray). To verify the hemocyte-specific expression, we analyzed by semi-quantitative and real-time quantitative RT-PCR using the highly expressed endogenous $Actin$ RNA as an intrinsic reference. In this study, we confirmed that one gene-sw17255- out of 5 candidates expressed in the hemocyte tissue, which was consistent with the previous data. Circulating hemocytes in the body fluid of the $B.$ $mori$ are most powerful target organ for producing biomaterials. We need further studies to find hemocyte-specific promoter region from sw17255 gene. Finally, this result can be applied in creating transgenic silkworms as a biomedical insect.

Serratia marcescens의 곤충 병원성 관련형질 탐색을 위한 분자생물학적 연구 (Molecular Approaches to Determine the Character of Serratia marcescens Associated with the Insect Pathogenicity to Brown Planthopper)

  • 김희규;배동원;박진희;윤한대
    • 한국응용곤충학회지
    • /
    • 제32권3호
    • /
    • pp.330-337
    • /
    • 1993
  • 벼멸구에 강한 병원성이 있는 Serratia marcescens, biotype A2a를 분리, 동정하였다. 벼 유묘에 분무한 후 성충-계절풍을 따라 비래하는 형태-을 공시하고 병원성을 조사하여 3~5일 만에 강한 살충력을 발견하였다. 따라서, 본 세균의 곤충병원성 관련 형질 탐색을 하기 위하여 Tn5로써 돌연변이를 시도한 후, Chitinase, Protease, DNase indicator media에서 돌연변이 계통을 분리하였다. 이들을 공시충에 병원성을 검정한 결과 Pro-Strain중에서 병원력이 현저히 떨어지는 현상을 관찰하였다. 공시충을 전자현미경(SEM, TEM)으로 관찰하여, abdomen의 전장부위와 표피사이에 다수의 세균이 증식하였음을 발견하였다. 곤충복부표피조직 중 cuticle층은 intact한 상태였다. 따라서, 이에 관련된 유전자를 분리하기 위해 genomic library 실험을 진행하고 있다.

  • PDF

Characteristics of the Infection of Tilletia laevis Kuhn (syn. Tilletia foetida (Wallr.) Liro.) in Compatible Wheat

  • Ren, Zhaoyu;Zhang, Wei;Wang, Mengke;Gao, Haifeng;Shen, Huimin;Wang, Chunping;Liu, Taiguo;Chen, Wanquan;Gao, Li
    • The Plant Pathology Journal
    • /
    • 제37권5호
    • /
    • pp.437-445
    • /
    • 2021
  • Tilletia laevis Kuhn (syn. Tilletia foetida (Wallr.) Liro.) causes wheat common bunt, which is one of the most devastating plant diseases in the world. Common bunt can result in a reduction of 80% or even a total loss of wheat production. In this study, the characteristics of T. laevis infection in compatible wheat plants were defined based on the combination of scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. We found T. laevis could lead to the abnormal growth of wheat tissues and cells, such as leakage of chloroplasts, deformities, disordered arrangements of mesophyll cells and also thickening of the cell wall of mesophyll cells in leaf tissue. What's more, T. laevis teliospores were found in the roots, stems, flag leaves, and glumes of infected wheat plants instead of just in the ovaries, as previously reported. The abnormal characteristics caused by T. laevis may be used for early detection of this pathogen instead of molecular markers in addition to providing theoretical insights into T. laevis and wheat interactions for breeding of common bunt resistance.

Adiponectin Gene Cloning and Its Expression in Insect Cell Expression System

  • Yuh, In Suh;Sheffield, Lewis G.
    • Reproductive and Developmental Biology
    • /
    • 제36권3호
    • /
    • pp.193-198
    • /
    • 2012
  • This study was to examine expression of the recombinant full-length adiponectin (recombinant adiponectin) in insect ovarian cell culture system and to characterize structural properties of the recombinant adiponectin secreted in medium. Gene construct encoding the recombinant adiponectin contained N-terminal collagen-like domain (110 Amino Acids, AAs), C-terminal globular domain (137 AAs) and C-terminal peptides for detection with V5 antibody (26 AAs included adaptor peptide) and purification using the 6xHis tag (6 AAs). The approximate molecular weight of the product (monomer) was 35 kDa. Molecular mass species of the expressed recombinant adiponectin were monomer (~35 kDa), dimer (~70 kDa), trimer (~105 kDa) and hexamer (~210 kDa). The major secreted species were the LMW forms, such as monomer, dimer, and trimer. There was MMW of hexamer as minor form. HMW multimers (~300 kDa) were shown as a tracer or not detected on the SDS-PAGE in several experiments (data not shown). The multimer forms in this study were not compatible to those in animal or human serum and adipose tissue by other researcher's study in which the major multimer forms were HMW. By protein denaturing experiments with reducing reagent (${\beta}$-MeOH), anionic detergent (SDS) and heat ($95^{\circ}C$) on the SDS-PAGE, not all adiponectin multimers seemed to have disulfide bond linked structure to form multimers. The recombinant adiponectin which expressed in insect ovarian cell culture system seemed to have the limitation as full physiological regulator for the application to animal and human study.

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제48권1호
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

형질전환(形質轉換)된 포플러의 딱정벌레에 대한 저항성(抵抗性) 유전자(遺傳子)(Proteinase Inhibitor II) 발현(發現) (Gene Manipulation of Pin 2(Proteinase Inhibitor II) to the Cottonwood Leaf Beetle(Coleoptera : Chrysomelidae) in Transgenic Poplar(Populus deltodies × P. nigra))

  • 강호덕
    • 한국산림과학회지
    • /
    • 제86권4호
    • /
    • pp.407-414
    • /
    • 1997
  • 외래 저항성 유전자, Proteinase inhibitor II가 형질전환된 3계통의 벨기에 포플러를 대상으로 딱정벌레에 대한 유전자 발현정도가 기내에서 조사되었다. 포플러 계통은 선발 유전자로서 Nos-promoter와 Neomycin phosphotransferase gene에 의하여 조절되고 곤충에 대한 저항성 유전자로서 CaMV-35S와 Pin2(Proteinase inhibitor II)에 의한 형질전환체이다. 특히, 형질전환된 포플러의 내충성 저항력을 조기검정하기 위하여, 조직배양을 응용한 새로운 방법으로서 곤충의 알을 표면 살균하여 기내의 조직배양묘와 배양하는 동시배양 방법이 이용되었다. 형질전환된 포플러의 저항성은 기내에서 유충에 의해 섭취된 잎면적, 잎 섭취에 의한 유충의 무게 증감, 유충의 성장단계 등에 의하여 조사되었다. 특히, 잎면적은 각각의 LPI(Leaf plastochron index)별로 측정되었고, 잎면적, 유충의 무게, 곤충의 성장 속도는 형질전환체와 비형질전환체 간에 큰 차이를 보였다. 기내에서 무병상태로 배양된 알들이 부화된 후, 유충의 잎 섭취도는 LPI 4와 5사이에서 가장 높았다. 본 실험의 기내 배양법은 외래유전자를 삽입한 이후에 곧바로 발현을 빠른 시간내에 조기검정 할 수 있는 새로운 방법의 개발이라 할 수 있다.

  • PDF

Molecular Cloning and Characterization of a Lipocalin in the Bumblebee Bombus Ignitus

  • Hu, Zhigang;Yoon, Hyung-Joo;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제19권2호
    • /
    • pp.229-235
    • /
    • 2009
  • We have cloned and characterized a lipocalin from the bumblebee Bombus ignitus (Bi-lipocalin). The Bi-lipocalin gene spans 2284 bp and consists of four exons coding for 270 amino acid residues. Sequence analysis revealed that Bi-lipocalin possesses three structurally conserved regions (SCTs) that characterize lipocalins. Recombinant Bi-lipocalin, expressed as a 37 kDa protein in baculovirus-infected insect cells, was N-glycosylated, indicating that the carbohydrate moieties are necessary for secretion. Tissue distribution analysis revealed ubiquitous expression of Bi-lipocalin in all tissues examined. Bi-lipocalin transcripts were upregulated by stress, such as wounding, $H_2O_2$ exposure, and external temperature shock. These results indicate that Bi-lipocalin is a stress-inducible protein that acts on wounding, $H_2O_2$ overexposure and temperature stimulation.

Researches Using Radio-labelled Insecticides in Korea

  • Lee, Kyu-Seung
    • 한국환경농학회지
    • /
    • 제26권4호
    • /
    • pp.351-363
    • /
    • 2007
  • The scientific articles using radio labelled insecticides performed by Korean researchers were reviewed. The research works were divided into 4 categories such as soil, plant, animal and insect. All researches used $^{14}C$-labelled chemicals, and the $^{14}C$-carbofuran was widely used among them. Fate of insecticides, bound-residues and metabolic process were staple concerning area in soil study. And the uptake and translocation, metabolism and metabolites also a major interests in plant study. As well as the degradation, metabolic pathway and metabolites, and distribution of chemicals in animal tissue were another point of consideration in animal study. And finally, the penetration ratio into body and resistant mechanism were the major concerning views of study with insects.

Establishment of Mass Propagation System of Virus-Free Sweetpotato Plants and Conservation

  • Lee, Joon-Seol;Chung, Mi-Nam;Jeong, Byeong-Choon;Ahn, Young-Sup;Kim, Hag-Sin;Park, Jong-Suk;Bang, Jin-Ki
    • 한국작물학회지
    • /
    • 제52권2호
    • /
    • pp.220-227
    • /
    • 2007
  • Sweetpotato fields in Korea are highly infected with virus and virus like diseases that greatly diminish both yield and quality as indicated by field observations and laboratory tests. In order to solve this problem, there is an urgent need to produce and mass propagate virus-free planting materials for distribution to the farmers. These experiments were conducted, firstly, to determine the most appropriate culture media, nutrient solution, and cutting intervals to maintain growth and vigor of tissue cultured plantleta as mother plants for propagation in insect-proof greenhouse. And as a labor saving method, the production efficiency of plug trays for rapid propagation of stem cuttings as a source of planting materials was likewise evaluated. Results showed that plants grown in medium B supplied with 0.5 and 1.0 strength of MS nutrients had high growth rate, and 20-day cutting interval was the best. 72-plug tray was better than 128-plug. Secondly, it was to develop a technique for the production of first-generation seed roots using hydroponics cultivation system. The yield of virus-free plants propagated in the non-insect proof and open-field cultivation was 2,402 kg/10a, 6% higher than those in the insect-proof cultivation, and the rate of virus re-infection was 18% higher compared to 3.3% with insect-proof cultivation. Lastly, it was to investigate the growth performance of virus free plants in farmers' field. Differences were existed in the yield depending on the variety used, but virus free plants showed an increase of $6{\sim}24%$ over virus infected plants.

The Strategy for the Development of Bio-Resources Utilizing Sericultural Products and Insects

  • Lee, Won-Chu;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제1권2호
    • /
    • pp.95-102
    • /
    • 2000
  • Experiments related to the field of sericulture started in the years 1900, in Korea. The sericultural experimental station in Korea was first organized among agricultural fields in Korea, indicating that sericulture in Korea was regarded as an important field of agriculture. Sericulture has been devoted to a great deal for the improvement of Korean economy during the past 100 years even under the coarse social circumstances caused particularly by the Korean War, However, the traditional Korean sericulture, aimed to produce silk yarn, was weakened, because of several reasons such as diminishment in silk consumption, increased labor charge in Korea, and so on. After this difficulty time, the Korean sericulture was revolutionized by shifting into functional sericulture from 1995, and the Korean sericulture now plays an important role for the improvement of human health. Mulberry tree, silkworm, and silk have a boundless potential to be developed as resources. We expect the know-how obtained through silkworm research would expand to the other insect research too. Thus, an area of entomological industry is hoped to prosper owing to insect research as well as sericulture. Mulberry tree is known to possess many bio-active substances, so it can be utilized as a resource for substitute medicine and a raw material for the functional food. In addition, an invention of genetically engineered mulberry variety, which will produce more bioactive substances, is expected. Silkworm is one of the most extensively studied insect organisms on the genome so far, Thus, silkworm is expected to be an "insect bio-factory", enabling mass-production of useful proteins by transformation, in which useful foreign genes are assimilated into silkworm. Silk can be transformed into several phases, because it possesses useful functional groups, which are sensitive to chemical reaction. Also, because silk fibrin itself is protein, it has a superior applicability as tissue membrane. Due to this usefulness, many researchers are now working on the silk as food, cosmetic, medical resource, and bioengineering resource, and even an expanded application is expected using silk in the future. Until now, the researches on insects were largely focused on the prevention of the damage caused by pest, instead of a beneficial aspect. However, insects are thought to be the fourth natural resource in the world, possessing unlimited potential as world resources in the near future. Therefore, our entomological research effort should be focused on the subject with potential for industrialization. Such subject includes selecting the insect species useful for environmental evaluation, construction of environment-friendly agricultural ecosystem, pollen mediation, pet, and advanced bio-resources.

  • PDF