• Title/Summary/Keyword: Insect immune

Search Result 74, Processing Time 0.018 seconds

Supplementation of Dried Mealworm (Tenebrio molitor larva) on Growth Performance, Nutrient Digestibility and Blood Profiles in Weaning Pigs

  • Jin, X.H.;Heo, P.S.;Hong, J.S.;Kim, N.J.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.979-986
    • /
    • 2016
  • This experiment was conducted to investigate the effects of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. A total of 120 weaning pigs ($28{\pm}3days$ and $8.04{\pm}0.08kg$ of body weight) were allotted to one of five treatments, based on sex and body weight, in 6 replicates with 4 pigs per pen by a randomized complete block design. Supplementation level of dried mealworm was 0%, 1.5%, 3.0%, 4.5%, or 6.0% in experimental diet as treatment. Two phase feeding programs (phase I from 0 day to 14 day, phase II from 14 day to 35 day) were used in this experiment. All animals were allowed to access diet and water ad libitum. During phase I, increasing level of dried mealworm in diet linearly improved the body weight (p<0.01), average daily gain (ADG) (p<0.01) and average daily feed intake (ADFI) (p<0.01). During phase II, ADG also tended to increase linearly when pigs were fed higher level of dried mealworm (p = 0.08). In addition, increasing level of dried mealworm improved the ADG (p<0.01), ADFI (p<0.05) and tended to increase gain to feed ratio (p = 0.07) during the whole experimental period. As dried mealworm level was increased, nitrogen retention and digestibility of dry matter as well as crude protein were linearly increased (p = 0.05). In the results of blood profiles, decrease of blood urea nitrogen (linear, p = 0.05) and increase of insulin-like growth factor (linear, p = 0.03) were observed as dried mealworm was increased in diet during phase II. However, there were no significant differences in immunoglobulin A (IgA) and IgG concentration by addition of dried mealworm in the growth trial. Consequently, supplementation of dried mealworm up to 6% in weaning pigs' diet improves growth performance and nutrient digestibility without any detrimental effect on immune responses.

Gene Cloning, Expression and Immunogenicity of the Protective Antigen Subolesin in Dermacentor silvarum

  • Hu, Yonghong;Zeng, Hua;Zhang, Jincheng;Wang, Duo;Li, Dongming;Zhang, Tiantian;Yang, Shujie;Liu, Jingze
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.93-97
    • /
    • 2014
  • Subolesin (4D8), the ortholog of insect akirins, is a highly conserved protective antigen and thus has the potential for development of a broad-spectrum vaccine against ticks and mosquitoes. To date, no protective antigens have been characterized nor tested as candidate vaccines against Dermacentor silvarum bites and transmission of associated pathogens. In this study, we cloned the open reading frame (ORF) of D. silvarum 4D8 cDNA (Ds4D8), which consisted of 498 bp encoding 165 amino acid residues. The results of sequence alignments and phylogenetic analysis demonstrated that D. silvarum 4D8 (Ds4D8) is highly conserved showing more than 81% identity of amino acid sequences with those of other hard ticks. Additionally, Ds4D8 containing restriction sites was ligated into the pET-32(a+) expression vector and the recombinant plasmid was transformed into Escherichia coli rosetta. The recombinant Ds4D8 (rDs4D8) was induced by isopropyl ${\beta}$-D-thiogalactopyranoside (IPTG) and purified using Ni affinity chromatography. The SDS-PAGE results showed that the molecular weight of rDs4D8 was 40 kDa, which was consistent with the expected molecular mass considering 22 kDa histidine-tagged thioredoxin (TRX) protein from the expression vector. Western blot results showed that rabbit anti-D. silvarum serum recognized the expressed rDs4D8, suggesting an immune response against rDs4D8. These results provided the basis for developing a candidate vaccine against D. silvarum ticks and transmission of associated pathogens.

Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., (동충하초 유래 cordycepin의 항암 활성 기전 최근 연구 동향)

  • Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.607-614
    • /
    • 2015
  • Cancers are the largest cause of mortality and morbidity all over the world. Cordycepin, an adenosine analog, is a major functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. Over the last decade, this compound has been reported to possess many pharmacological properties, such as an ability to enhance immune function, as well as anti-inflammatory, antioxidant and anti-cancer effects. Recently, numerous studies have reported interesting properties of cordycepin as a chemopreventive agent as well. There is an accumulating body of experimental evidences suggesting that cordycepin impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting invasion and metastasis of cancer cells. In many cancer cell lines, cordycepin inhibits growth and cell cycle progression by inducing arrest of the G2/M phase, resulting from the inhibition of retinoblastoma protein phosphorylation and induction of cyclin-dependent kinase inhibitors. To induce apoptosis, cordycepin activates the extrinsic and intrinsic pathways, which promotes reactive oxygen species generation and the downstream activation of kinase cascades. Cordycepin also can activate alternative pathways to cell death such autophagy. In addition, cordycepin can inhibit the pro-metastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the nuclear factor-kappa B and activated protein-1 signaling pathways. In this review, we summarized the variety of action mechanisms by which cordycepin may mediate chemopreventive effects on cancer and discussed the potential of this natural product as a promising therapeutic inhibitor of cancer development.

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media (곤충병원세균(Photorhabdus temperata ssp. temperata) 유래 곤충 면역 억제물질 생성 비교 연구를 통한 저렴한 세균 배지 선발)

  • Seo, Sam-Yeol;Jang, Ho-Jin;Kim, Kun-Woo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.