• 제목/요약/키워드: Input seismic wave

검색결과 76건 처리시간 0.019초

비탄성 지진응답평가를 위한 Spectrum Intensity Scale 분석 (Analysis of the Spectrum Intensity Scale for Inelastic Seismic Response Evaluation)

  • 박경록;전법규;김남식;서주원
    • 한국지진공학회논문집
    • /
    • 제15권5호
    • /
    • pp.35-44
    • /
    • 2011
  • 최대지반가속도(PGA : Peak Ground Acceleration)는 지진파의 최대값을 나타내는 매개변수(Parameter)이며 주로 지진파의 강도를 나타낸다. PGA가 동일하더라도 지진파에 따라 다른 동적특성을 가질 수 있고 구조물에 미치는 영향도 다를 수 있다. 따라서 PGA만으로 구조물에 미치는 지진의 특성을 평가하는 것은 바람직하지 못하다. 본 연구에서는 구조물의 비탄성 지진응답해석을 위하여 단자유도(Single Degree Of Freedom) 구조물의 시간이력해석 수행하였으며, 수치해석모델은 완전 탄소성(Perfect Elasto-Plastic)으로 가정하였다. 검토한 입력 지진파는 El Centro NS(1940)의 값을 증감한 지진파를 포함한 실측지진파, 인공지진파를 사용하였다. 이와 같은 수치해석을 통하여 PGA가 동일한 인공지진파들에 대해 비탄성 지진응답해석을 수행하고, 각 지진파에 대하여 변위연성도와 누적소산에너지를 비교하였다. 그 결과 동일한 PGA를 가지더라도 지진파에 따라 서로 다른 응답을 확인할 수 있었다. 따라서 지진의 특성뿐 아니라 구조물의 특성을 반영할 수 있는 지표가 필요할 것으로 판단된다. 구조물의 비탄성 지진응답을 대표할 수 있는 SI(Spectrum Intensity)는 속도응답스펙트럼의 일정구간에 대한 적분을 통하여 얻을 수 있다. 이러한 SI와 변위연성도 및 누적소산에너지의 상관관계 분석을 통하여 구조물의 지진에 대한 비탄성응답의 대표값으로 SI가 적합하다는 것을 확인할 수 있다.

An improved approach for multiple support response spectral analysis of a long-span high-pier railway bridge

  • Li, Lanping;bu, Yizhi;Jia, Hongyu;Zheng, Shixiong;Zhang, Deyi;Bi, Kaiming
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.193-200
    • /
    • 2017
  • To overcome the difficulty of performing multi-point response spectrum analysis for engineering structures under spatially varying ground motions (SVGM) using the general finite element code such as ANSYS, an approach has been developed by improving the modelling of the input ground motions in the spectral analysis. Based on the stochastic vibration analyses, the cross-power spectral density (c-PSD) matrix is adopted to model the stationary SVGM. The design response spectra are converted into the corresponding PSD model with appropriate coherency functions and apparent wave velocities. Then elements of c-PSD matrix are summarized in the row and the PSD matrix is transformed into the response spectra for a general spectral analysis. A long-span high-pier bridge under multiple support excitations is analyzed using the proposed approach considering the incoherence, wave-passage and site-response effects. The proposed approach is deemed to be an efficient numerical method that can be used for seismic analysis of large engineering structures under SVGM.

광대역 하이브리드 기법과 지반응답 해석을 통한 낙동강 삼각주 지역의 가상지진 지반운동 시뮬레이션 (Ground Motion Simulation of Scenario Earthquakes in the Nakdonggang Delta Region using a Broadband Hybrid Method and Site Response Analysis)

  • 김재휘;오준수;정석호
    • 한국지진공학회논문집
    • /
    • 제28권5호
    • /
    • pp.233-247
    • /
    • 2024
  • The damage to structures during an earthquake can be varied depending on the frequency characteristics of seismic waves and the geological properties of the ground. Therefore, considering such attributes in the design ground motions is crucial. The Korean seismic design standard (KDS 17 10 00) provides design response spectra for various ground classifications. If required for time-domain analysis, ground motion time series can be either selected and adjusted from motions recorded at rock sites in intraplate regions or artificially synthesized. Ground motion time series at soil sites should be obtained from site response analysis. However, in practice, selecting suitable ground motion records is challenging due to the overall lack of large earthquakes in intraplate regions, and artificially synthesized time series often leads to unrealistic responses of structures. As an alternative approach, this study provides a case study of generating ground motion time series based on the hybrid broadband ground motion simulation of selected scenario earthquakes at sites in the Nakdonggang delta region. This research is significant as it provides a novel method for generating ground motion time series that can be used in seismic design and response analysis. For large-magnitude earthquake scenarios close to the epicenter, the simulated response spectra surpassed the 1000-year design response spectra in some specific frequency ranges. Subsequently, the acceleration time series at each location were used as input motions to perform nonlinear 1D site response analysis through the PySeismoSoil Package to account for the site response characteristics at each location. The results of the study revealed a tendency to amplify ground motion in the mid to long-period range in most places within the study area. Additionally, significant amplification in the short-period range was observed in some locations characterized by a thin soil layer and relatively high shear wave velocity soil near the upper bedrock.

Numerical simulation of tuned liquid tank- structure systems through σ-transformation based fluid-structure coupled solver

  • Eswaran, M.;Reddy, G.R.
    • Wind and Structures
    • /
    • 제23권5호
    • /
    • pp.421-447
    • /
    • 2016
  • Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.

가스 하이드레이트 부존층의 구조 파악을 위한 탄성파 전산처리 및 AVO 분석 (Seismic Pre-processing and AVO analysis for understanding the gas-hydrate structure)

  • 정부흥
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.634-637
    • /
    • 2005
  • Multichannel seismic data acquired in Ulleung Basin of East Sea for gas hydrate exploration. The seismic sections of this area show strong BSR(bottom simulating reflections) associated with methane hydrate occurrence in deep marine sediments. Very limited information is available from deep sea drilling as the risk of heating and destabilizing the initial hydrate conditions during the processing of drilling is considerably high. Not so many advanced status of gas hydrate exploration in Korea, the most of information of gas hydrate characteristics and properties are inferred from seismic reflection data. In this study, The AVO analysis using the long offset seismic data acquired in Ulleung Basin used to explain the characteristics and structure of gas hydrate. It is used primarily P-wave velocity accessible from seismic data. To make a good quality of AVO analysis input data, seismic preprocessing including 'true gain correction', 'source signature deconvolution', twice velocity analysis and some kinds of multiple rejection and enhancing the signal to noise ratio processes is carried out very carefully. The results of AVO analysis, the eight kinds of AVO attributes are estimated basically and some others of AVO attributes are evaluated for interpretation of AVO analysis additionally. The impedance variation at the boundary of gas hydrate and free gas is estimated for investing the BSR characteristics and properties. The complex analysis is performed also to verifying the amplitude variation and phase shift occurrence at BSR. Type III AVO anomaly appearance at saturated free gas area is detected on BSR. It can be an important evidence of gas hydrate deposition upper the BSR.

  • PDF

Study on seismic performance of shaking table model of full light-weight concrete utility tunnel

  • Yanmin Yang;Qi Yuan;Yongqing Li;Jingyu Li;Yuan Gao;Yuzhe Zou
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.15-26
    • /
    • 2023
  • In order to study the anti-seismic performance of full light-weight concrete utility tunnel, EL Centro seismic waves were input, and the seismic simulation shaking table test was carried out on the four utility tunnel models. The dynamic characteristics and acceleration response of the system consisting of the utility tunnel structure and the soil, and the interlayer displacement response of the structure were analyzed. The influence law of different construction methods, haunch heights and concrete types on the dynamic response of the utility tunnel structure was studied. And the experimental results were compared with the finite element calculation results. The results indicated that with the increase of seismic wave intensity, the natural frequency of the utility tunnel structure system decreased and the damping ratio increased. The assembling composite construction method could be equivalent to replace the integral cast-in-place construction method. The haunch height of the assembling composite full light-weight concrete utility tunnel was increased from 30 mm to 50 mm to enhance the anti-seismic performance during large earthquakes. The anti-seismic performance of the full light-weight concrete utility tunnel was better than that of the ordinary concrete utility tunnel. The peak acceleration of the structure was reduced by 21.8% and the interlayer displacement was reduced by 45.8% by using full light-weight concrete. The finite element simulation results were in good agreement with the experimental results, which could provide reference for practical engineering design and application.

Dynamic analysis of foundations in a layered half-space using a consistent transmitting boundary

  • Lee, Jin Ho;Kim, Jae Kwan;Tassoulas, John L.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.203-230
    • /
    • 2012
  • This paper presents results for impedance (and compliance) functions and input motions of foundations in a layered half-space computed on the basis of a procedure that combines a consistent transmitting boundary with continued-fraction absorbing boundary conditions which are accurate and effective in modeling wave propagation in various unbounded domains. The effects of obliquely incident seismic waves in a layered half-space are taken into account in the formulation of the transmitting boundary. Using the numerical model, impedance (and compliance) functions and input motions of rigid circular foundations on the surface of or embedded in a homogeneous half-space are computed and compared with available published results for verification of the procedure. Extrapolation methods are proposed to improve the performance in the very-low-frequency range and for the static condition. It is concluded from the applications that accurate analysis of foundation dynamics and soil-structure interaction in a layered half-space can be carried out using the enhanced consistent transmitting boundary and the proposed extrapolations.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

지진계측 기록을 이용한 저수지 지진응답가속도 증폭 특성 분석 (Analysis of Reservoir Seismic Response Acceleration Amplification Characteristics Using Seismic Measurements Data)

  • 이무재;김용성;타망비벡;이승주;이길용;허준
    • 한국지반신소재학회논문집
    • /
    • 제19권4호
    • /
    • pp.51-63
    • /
    • 2020
  • 본 연구에서는 지진가속도 계측기의 계측 데이터를 사용하여 저수지의 동적해석방법에 대한 모형 검정 및 저수지 높이에 따른 지진가속도 증폭 특성을 분석하였다. 모형을 검정하기 위해 댐 기초의 계측 데이터를 입력 데이터로 사용하였고 해석 결과를 댐 상부의 계측 데이터와 비교한 결과 수치해석을 이용해 출력된 지진파와 계측 지진파의 최댓값과 그 파형이 비슷하게 나타났고 지진가속도 증폭 특성의 경우 지진가속도 증폭비는 저수지의 높이와 지진의 크기에 비례하는 것으로 나타났다. 본 연구를 통해 저수지에 설치된 가속도계에서 얻은 계측 데이터를 활용하여 반복 탄소성 구성식을 이용한 동적해석방법은 지진파 특성 분석이 적절하게 수행될 수 있는 기법임을 확인하였고 향후 이러한 기법을 적용해 저수지의 지진가속도 계측기의 활용도를 제고할 수 있을 것으로 판단된다.

후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가 (Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant)

  • 하정곤;김미래;김민규
    • 한국지진공학회논문집
    • /
    • 제25권5호
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.