• Title/Summary/Keyword: Input modeling

Search Result 1,775, Processing Time 0.028 seconds

Efficiency evaluation of nursing homes in China's eastern areas Based on DEA-Malmquist Model (DEA-Malmquist를 활용한 중국 동부지역 요양원의 효율성 평가에 관한 연구)

  • Chu, Ting;Sim, Jae-yeon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.273-282
    • /
    • 2021
  • Nursing home plays a role in providing elderly care in the context of China's rapid population aging, but little understanding of the efficiency of the nursing homes. In this paper, we investigated the efficiency in nursing homes using Data Envelopment Analysis (DEA) and Malmquist index (MPI) for the modeling of the number of nursing home beds, fixed assets, and medical personnel as input variables, and the number of elderly people of self-care, the number of elderly people of partial self-care, the number of bed-ridden elderly people and the income of nursing homes as output variables. Stratification analysis showed that the top two provinces in the DEA-CCR yield were Beijing and Shanghai in the five-year survey period. Four provinces (Beijing, Jiangsu, Shandong, and Shanghai) scored 1.00 in terms of DEA-BCC yield. The MPI analysis showed that Hainan ranked the highest five-year average in the included provinces. In terms of resource utilization, internal management, operation scale, and other aspects, the nursing homes in the provinces with high-efficiency evaluation results show high efficiency and technological progress, whereas the areas with low-efficiency evaluation showed a feature of the improving technical efficiency.

Prospect of future water resources in the basins of Chungju Dam and Soyang-gang Dam using a physics-based distributed hydrological model and a deep-learning-based LSTM model (물리기반 분포형 수문 모형과 딥러닝 기반 LSTM 모형을 활용한 충주댐 및 소양강댐 유역의 미래 수자원 전망)

  • Kim, Yongchan;Kim, Youngran;Hwang, Seonghwan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1115-1124
    • /
    • 2022
  • The impact of climate change on water resources was evaluated for Chungju Dam and Soyang-gang Dam basins by constructing an integrated modeling framework consisting of a dam inflow prediction model based on the Variable Infiltration Capacity (VIC) model, a distributed hydrologic model, and an LSTM based dam outflow prediction model. Considering the uncertainty of future climate data, four models of CMIP6 GCM were used as input data of VIC model for future period (2021-2100). As a result of applying future climate data, the average inflow for period increased as the future progressed, and the inflow in the far future (2070-2100) increased by up to 22% compared to that of the observation period (1986-2020). The minimum value of dam discharge lasting 4~50 days was significantly lower than the observed value. This indicates that droughts may occur over a longer period than observed in the past, meaning that citizens of Seoul metropolitan areas may experience severe water shortages due to future droughts. In addition, compared to the near and middle futures, the change in water storage has occurred rapidly in the far future, suggesting that the difficulties of water resource management may increase.

A Study on Improvement of Air Quality Dispersion Model Application Method in Environmental Impact Assessment (II) - Focusing on AERMOD Model Application Method - (환경영향평가에서의 대기질 확산모델 적용방법 개선 연구(II) - AERMOD 모델 적용방법을 중심으로 -)

  • Suhyang Kim;Sunhwan Park;Hyunsoo Joo;Minseop So;Naehyun Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.4
    • /
    • pp.203-213
    • /
    • 2023
  • The AERMOD model was the most used, accounting for 89.0%, based on the analysis of the environmental impact assessment reports published in the Environmental Impact Assessment Information Support System (EIASS) between 2021 and 2022. The mismatch of versions between AERMET and AERMOD was found to be 25.3%. There was the operational time discrepancy of 50.6% from industrial complexes, urban development projects between used in the model and applied in estimating pollutant emissions. The results of applying various versions of the AERMET and AERMOD models to both area sources and point sources in both simple and complex terrain in the Gunsan area showed similar values after AERMOD version 12 (15181). Emissions are assessed as 24-hour operation, and the predicted concentration in both simple and complex terrain when using the variable emission coefficient option that applies an 8-hour daytime operation in the model is lowered by 37.42% ~ 74.27% for area sources and by 32.06% ~ 54.45% for point sources. Therefore, to prevent the error in using the variable emission coefficient, it is required to clearly present the emission calculation process and provide a detailed explanation of the composition of modeling input data in the environmental impact assessment reports. Also, thorough reviews by special institutions are essential.

Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning (근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류)

  • Yong-Ho Lee;Soo-In Sohn;Sun-Hee Hong;Chang-Seok Kim;Chae-Sun Na;In-Soon Kim;Min-Sang Jang;Young-Ju Oh
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.581-589
    • /
    • 2021
  • Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.

Development of Truck Axle Load Distribution Model using WIM Data (WIM 자료를 활용한 화물차 축하중 분포 모형 개발)

  • Lee, Dong Seok;Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.821-829
    • /
    • 2006
  • Traffic load comprise primary input to pavement design causing pavement damage. therefore it should be proceeded suitable traffic load distribution modeling for pavement design and analysis. Traffic load have been represented by equivalent single axle loads (ESALs) which convert mixed traffic stream into one value for design purposes. But there are some limit to apply ESALs to other roads because it is empirical value developed as part of the original AASHO(American Association of State Highway Officials) road test. There have been many efforts to solve these problems. Several leading country have implemented M-E(Mechanistic-Empirical) design procedures based on mechanical concept. As a result, they established traffic load quantification method using load distribution model known as Axle Load Spectra. This paper details Axle Load Spectra and presents axle load distribution model based on normal mixture distribution function using truck load data collected by WIM system installed in national highway. Axle load spectra and axle load distribution model presented in this paper could be useful for basic data when making traffic load quantification plan for pavement design, overweight vehicle permit plan and pavement maintenance cost plan.

Trends identification of species distribution modeling study in Korea using text-mining technique (텍스트마이닝을 활용한 종분포모형의 국내 연구 동향 파악)

  • Dong-Joo Kim;Yong Sung Kwon;Na-Yeon Han;Do-Hun Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.413-426
    • /
    • 2023
  • Species distribution model (SDM) is used to preserve biodiversity and climate change impact. To evaluate biodiversity, various studies are being conducted to utilize and apply SDM. However, there is insufficient research to provide useful information by identifying the current status and recent trends of SDM research and discussing implications for future research. This study analyzed the trends and flow of academic papers, in the use of SDM, published in academic journals in South Korea and provides basic information that can be used for related research in the future. The current state and trends of SDM research were presented using philological methods and text-mining. The papers on SDM have been published 148 times between 1998 and 2023 with 115 (77.7%) papers published since 2015. MaxEnt model was the most widely used, and plant was the main target species. Most of the publications were related to species distribution and evaluation, and climate change. In text mining, the term 'Climate change' emerged as the most frequent keyword and most studies seem to consider biodiversity changes caused by climate change as a topic. In the future, the use of SDM requires several considerations such as selecting the models that are most suitable for various conditions, ensemble models, development of quantitative input variables, and improving the collection system of field survey data. Promoting these methods could help SDM serve as valuable scientific tools for addressing national policy issues like biodiversity conservation and climate change.

A Rational Ground Model and Analytical Methods for Numerical Analysis of Ground-Penetrating Radar (GPR) (GPR 수치해석을 위한 지반 모형의 합리적인 모델링 기법 및 분석법 제안)

  • Lee, Sang-Yun;Song, Ki-Il;Park, June-Ho;Ryu, Hee-Hwan;Kwon, Tae-Hyuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.49-60
    • /
    • 2024
  • Ground-penetrating radar (GPR) enables rapid data acquisition over extensive areas, but interpreting the obtained data requires specialized knowledge. Numerous studies have utilized numerical analysis methods to examine GPR signal characteristics under various conditions. To develop more realistic numerical models, the heterogeneous nature of the ground, which causes clutter, must be considered. Clutter refers to signals reflected by objects other than the target. The Peplinski material model and fractal techniques can simulate these heterogeneous characteristics, yet there is a shortage of research on the necessary input parameters. Moreover, methods for quantitatively evaluating the similarity between field and analytical data are not well established. In this study, we calculated the autocorrelation coefficient of field data and determined the correlation length using the autocorrelation function. The correlation length represented the temporal or spatial distance over which data exhibited similarity. By comparing the correlation length of field data with that of the numerical model incorporating fractal weights, we quantitatively evaluated a numerical model for heterogeneous ground. Consequently, the results of this study demonstrated a numerical modeling technique that reflected the clutter characteristics of the field through correlation length.

Analysis of Color Distortion in Hazy Images (안개가 포함된 영상에서의 색 왜곡 특성 분석)

  • JeongYeop Kim
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.68-78
    • /
    • 2023
  • In this paper, the color distortion in images with haze would be analyzed. When haze is included in the scene, the color signal reflected in the scene is accompanied by color distortion due to the influence of transmittance according to the haze component. When the influence of haze is excluded by a conventional de-hazing method, the distortion of color tends to not be sufficiently resolved. Khoury et al. used the dark channel priority technique, a haze model mentioned in many studies, to determine the degree of color distortion. However, only the tendency of distortion such as color error values was confirmed, and specific color distortion analysis was not performed. This paper analyzes the characteristic of color distortion and proposes a restoration method that can reduce color distortion. Input images of databases used by Khoury et al. include Macbeth color checker, a standard color tool. Using Macbeth color checker's color values, color distortion according to changes in haze concentration was analyzed, and a new color distortion model was proposed through modeling. The proposed method is to obtain a mapping function using the change in chromaticity by step according to the change in haze concentration and the color of the ground truth. Since the form of color distortion varies from step to step in proportion to the haze concentration, it is necessary to obtain an integrated thought function that operates stably at all stages. In this paper, the improvement of color distortion through the proposed method was estimated based on the value of angular error, and it was verified that there was an improvement effect of about 15% compared to the conventional method.

  • PDF

A Study on the Relationship of Learning, Innovation Capability and Innovation Outcome (학습, 혁신역량과 혁신성과 간의 관계에 관한 연구)

  • Kim, Kui-Won
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.2
    • /
    • pp.380-420
    • /
    • 2014
  • We increasingly see the importance of employees acquiring enough expert capability or innovation capability to prepare for ever growing uncertainties in their operation domains. However, despite the above circumstances, there have not been an enough number of researches on how operational input components for employees' innovation outcome, innovation activities such as acquisition, exercise and promotion effort of employee's innovation capability, and their resulting innovation outcome interact with each other. This trend is believed to have been resulted because most of the current researches on innovation focus on the units of country, industry and corporate entity levels but not on an individual corporation's innovation input components, innovation outcome and innovation activities themselves. Therefore, this study intends to avoid the currently prevalent study frames and views on innovation and focus more on the strategic policies required for the enhancement of an organization's innovation capabilities by quantitatively analyzing employees' innovation outcomes and their most suggested relevant innovation activities. The research model that this study deploys offers both linear and structural model on the trio of learning, innovation capability and innovation outcome, and then suggests the 4 relevant hypotheses which are quantitatively tested and analyzed as follows: Hypothesis 1] The different levels of innovation capability produce different innovation outcomes (accepted, p-value = 0.000<0.05). Hypothesis 2] The different amounts of learning time produce different innovation capabilities (rejected, p-value = 0.199, 0.220>0.05). Hypothesis 3] The different amounts of learning time produce different innovation outcomes. (accepted, p-value = 0.000<0.05). Hypothesis 4] the innovation capability acts as a significant parameter in the relationship of the amount of learning time and innovation outcome (structural modeling test). This structural model after the t-tests on Hypotheses 1 through 4 proves that irregular on-the-job training and e-learning directly affects the learning time factor while job experience level, employment period and capability level measurement also directly impacts on the innovation capability factor. Also this hypothesis gets further supported by the fact that the patent time absolutely and directly affects the innovation capability factor rather than the learning time factor. Through the 4 hypotheses, this study proposes as measures to maximize an organization's innovation outcome. firstly, frequent irregular on-the-job training that is based on an e-learning system, secondly, efficient innovation management of employment period, job skill levels, etc through active sponsorship and energization community of practice (CoP) as a form of irregular learning, and thirdly a model of Yί=f(e, i, s, t, w)+${\varepsilon}$ as an innovation outcome function that is soundly based on a smart system of capability level measurement. The innovation outcome function is what this study considers the most appropriate and important reference model.

Analysis of BER According to Spatial and Frequency Diversity Gain in Uplink SC-FDMA with SIMO Systems (상향링크 SIMO 시스템에서 공간 및 주파수 다이버시티 이득에 따른 SC-FDMA의 BER 성능 분석)

  • Lee, Jin-Hui;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.535-547
    • /
    • 2014
  • We investigate BER (Bit Error Ratio) performance according to the gain of spatial and frequency diversities in uplink SC-FDMA of SIMO (Single Input Multiple Output) systems. The main results of the analysis in this paper are as follows. First, we prove that performance of integrated system for considering spatial and frequency diversity combining in parallel is equivalent with the performance of sequential system for performing diversity combining in sequence. By signal modeling, it is demonstrated that the performances of both systems are the same when the frequency diversity combining technique of the sequential system is equal to diversity combining technique of the integrated system, and spatial diversity combining technique of the sequential system is performed as MRC in advance of frequency diversity combining. Secondly, it is found that effect on the BER performance is different according to the gain of spatial and frequency diversities, respectively. The frequency diversity gain increases by increasing the number of subcarrier. It might affect the performance improvement of high SNR(Signal to Noise Ratio) while it maintains gap between performances of ZF(Zero Forcing) and MMSE(Minimum Mean Square Error) in frequency diversity combining schemes. Also, spatial diversity gain increases as the number of receiving antennas increases. It means that it can reduce performance gap between ZF and MMSE in frequency diversity combining schemes by increasing the number of receiving antennas. In addition, it might affect the performance improvement of the whole SNR. Finally, through the analysis of performance according to the spatial diversity gain, the performance of ZF in frequency diversity combining is equal to the MMSE if the number of receiving antennas is 6 or more.