• Title/Summary/Keyword: Input gas ratio

Search Result 150, Processing Time 0.025 seconds

A Study on the GMA Welding Characteristics of Al5083-O Aluminum Alloy According to the Shield Gas Mixing Ratio and Heat Input (Al5083-O 알루미늄합금의 보호가스 혼합비율 및 입열량에 따른 GMA용접 특성에 관한 연구)

  • 정재강;양훈승;이동길
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.65-70
    • /
    • 2002
  • This study was to evaluate GMA welding characteristics of the A15083-O aluminum alloy according to the shield gas mixing ratio and heat input change. The GMA welding of the base metal was carried out with flour different shield gas mixing ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%). Regarding the if1uence on the bead shape of the shield gas mixing ratio and heat input, the bead width was greatest in Ar100%+He0% mixture. But the penetration depth and area were greatest in Ar33%+He67% mixture considering that the lower Ax gas ratio, the higher bead depth and area. Also, dilution was also best in the shield gas mixing ratio. The size and number of deflects were least in Ar33%+He67% mixture. Higher He gas ratio resulted in less deflects detected by the radiographic inspection.

Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle (화학증착법에 의하여 제조된 탄화지르코늄 코팅층의 물성)

  • Kim, Jun-Gyu;Kum, E-Sul;Choi, Doo-Jin;Lee, Young-Woo;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.580-584
    • /
    • 2007
  • The ZrC layer instead of SiC layer is a critical and essential layer in TRISO coated fuel particles since it is a protective layer against diffusion of fission products and provides mechanical strength for the fuel particle. In this study, we carried out computational simulation before actual experiment. With these simulation results, Zirconium carbide (ZrC) films were chemically vapor deposited on $ZrO_2$ substrate using zirconium tetrachloride $(ZrCl_4),\;CH_4$ as a source and $H_2$ dilution gas, respectively. The change of input gas ratio was correlated with growth rate and morphology of deposited ZrC films. The growth rate of ZrC films increased as the input gas ratio decreased. The microstructure of ZrC films was changed with input gas ratio; small granular type grain structure was exhibited at the low input gas ratio. Angular type structure of increased grain size was observed at the high input gas ratio.

The Strength Evaluation of Al5083-O GMA Welding Zone According to the Heat Input and Mixing Shield Gas Ratio (Al5083-O GMA 용접부의 입열량과 보호가스 혼합비율에 따른 강도 평가)

  • 이동길;양훈승;정재강
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.158-165
    • /
    • 2002
  • This study was to evaluate mechanical properties and toughness of the Al5083-O aluminum alloy welding zone according to the mixing shield gas ratio and heat input change. The GMA(Gas Metal Arc) welding of the base metal was carried out with four different mixing shield gas ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%) and three different heat inputs(low, medium, and high). To investigate the Charpy absorbed energy of the weld zone, the specimens were divided base metal, weld metal, fusion line, and HAZ notched specimen according to the worked notch position. The different gas ratio and heat input had little effect upon the tensile strength. But Ar33%+He67% mixture had the greatest mechanical properties considering that the more He gas ratio concentrations, the higher yield strength and elongation. The maximum load and displacement of the weld metal notche specimen was so much low more than that of the base metal, but fusion line and HAZ notched specimens showed almost same regardless of the mixing shield gas ratio and heat input. The Charpy absorbed energy was lowest in weld metal notched specimen, and increased in the fusion line, and HAZ notche specimen in order. Ar33%+He67% mixture had the greatest toughness considering that the more He gas ratio, the higher absorption energy.

Fabrication of CVD SiC Double Layer Structure from the Microstructural Change Through Input Gas Ratio (입력기체비를 이용한 미세구조 변화로부터 화학증착 탄화규소의 복층구조 제작)

  • 오정환;왕채현;최두진;송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.937-945
    • /
    • 1999
  • In an effort to protect a RBSC(reaction -bonded SiC) tube SiC films from methyltrichlorosilane(MTS) by low pressure chemical vapor deposition were deposited in hydrogen atmosphere on the RBSC(reaction-bonded SiC) substrates over a range of input gas ratio(${\alpha}=P_{H2}/P_{MTS}=Q_{H2}/Q_{MTS}$=1 to 10) and deposition temperatures(T=1050~1300$^{\circ}C$). At the temper-ature of 1250$^{\circ}C$ the growth rate of SiC films increased and then decreased with decreasing the input gas ratio. The microstructure of SiC films was changed from granular type structure exhibiting (111) preferred orientation in the high input gas ratios to faceted columnar grain structure showing (220) in the low input gas ratios. The similar microstructure change was obtained by increasing the deposition temperature. These results were closely related to a change of deposition mechanism. Double layer structure having granular type and faceted ciolumnar grain structure from the manipulation of mechanism. Double layer structure having granular type and faceted columnar grain structure from the manipulation of the input gas ratio without changing the deposition temperatue was successfully fabricated through in -site process.

  • PDF

Light Tar Decomposition of Product Pyrolysis Gas from Sewage Sludge in a Gliding Arc Plasma Reformer

  • Lim, Mun-Sup;Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.89-94
    • /
    • 2012
  • Pyrolysis/gasification technology utilizes an energy conversion technique from various waste resources, such as biomass, solid waste, sewage sludge, and etc. to generating a syngas (synthesis gas). However, one of the major problems for the pyrolysis gasification is the presence of tar in the product gas. The tar produced might cause damages and operating problems on the facility. In this study, a gliding arc plasma reformer was developed to solve the previously acknowledged issues. An experiment was conducted using surrogate benzene and naphthalene, which are generated during the pyrolysis and/or gasification, as the representative tar substance. To identify the characteristics of the influential parameters of tar decomposition, tests were performed on the steam feed amount (steam/carbon ratio), input discharge power (specific energy input, SEI), total feed gas amount and the input tar concentration. In benzene, the optimal operating conditions of the gliding arc plasma 2 in steam to carbon (S/C) ratio, 0.98 $kWh/m^3$ in SEI, 14 L/min in total gas feed rate and 3.6% in benzene concentration. In naphthalene, 2.5 in S/C ratio, 1 $kWh/m^3$ in SEI, 18.4 L/min in total gas feed rate and 1% in naphthalene concentration. The benzene decomposition efficiency was 95%, and the energy efficiency was 120 g/kWh. The naphthalene decomposition efficiency was 79%, and the energy yield was 68 g/kWh.

Analysis of Operation Parameters of Pilot-Scale Packed-Absorption System for Airborne Methyl Ethyl Ketone Control (공기 중 메틸에틸케톤 제어를 위한 Pilot-Scale 흡수 시스템의 운영인자 분석)

  • Jo, Wan-Kuen;Kim, Wang-Tae
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.501-509
    • /
    • 2011
  • Unlike many laboratory-scale studies on absorption of organic compounds (VOCs), limited pilot-scale studies have been reported. Accordingly, the present study was carried out to examine operation parameters for the effective control of a hydrophilic VOC (methyl ethyl ketone, MEK) by applying a circular pilot-scale packed-absorption system (inside diameter 37 cm ${\times}$ height 167 cm). The absorption efficiencies of MEK were investigated for three major operation parameters: input concentration, water flow rate, and ratio of gas flow-rate to washing water amount (water-to-gas ratio). The experimental set-up comprised of the flow control system, generation system, recirculation system, packed-absorption system, and outlet system. For three MEK input concentrations (300, 350, and 750 ppm), absorption efficiencies approached near 95% and then, decreased gradually as the operation time increased, thereby suggesting a non-steady state condition. Under these conditions, higher absorption efficiencies were shown for lower input concentration conditions, which were consistent with those of laboratory-scale studies. However, a steady state condition occurred for two input concentration conditions (100 and 200 ppm), and the difference in absorption efficiencies between these two conditions were insignificant. As supported by an established gas-liquid absorption theory, a higher water flow rate exhibited a greater absorption efficiency. Moreover, as same with the laboratory-scale studies, the absorption efficiencies increased as water-to-gas ratios increased. Meanwhile, regardless of water flow rates or water-to-gas ratios, as the operation time of the absorption became longer, the pH of water increased, but the elevation extent was not substantial (maximum pH difference, 1.1).

Studies on Film Growth and Mechanical Properties of TiN by Chemical Vapor Deposition (화학증착에 의한 TiN 박막의 제조 및 기계적 성질에 관한 연구)

  • 김시범;김광호;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 1989
  • Titanium Nitride (TiN) was deposited onto the SKH9 tool steels by chemical vapor deposition (CVD) using a gaseous mixture of TiCl4, N2, and H2. The effects of the deposition temperature and input gas composition on the deposition rate, microstructure, preferred orientation, microhardness and wear resistance of TiN deposits were studied. The experimental results showed that the TiN deposition is thermally activated process with an apparent activation energy of about 27Kcal/mole in the temperature range between 1200$^{\circ}$K and 1400$^{\circ}$K. As H2/N2 gas input ratio increased, the deposition rate increased, showed maximum at H2/N2 gas input ratio of 1.5 and then decreased. Mechanical properties such as microhardness and wear resistance have close relation with the microstructure and preferred orientation of TiN deposits. It is suggested that the equiaxed structure with random orientation increases the microhardness and wear resistance of TiN deposits.

  • PDF

Thermodynamical and Experimental Analyses of Chemical Vapor Deposition of ATO from SnCl4-SbCl5-H2O Gas Mixture ($SnCl_4-SbCl_5-H_2O$ 기체혼합물로부터 ATO(Antimony Tin Oxide) 박막의 화학증착에 관한 열역학 및 실험분석)

  • 김광호;강용관;이수원
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.990-996
    • /
    • 1992
  • Chemical vapor deposition of ATO from SnCl4-SbCl5-H2O gas mixture was investigated with thermodynamic and experimental analyses. Electrical conductivity of the ATO film was much improved under deposition conditions of low input-gas ratio, Psbcl5/Psbcl4. This increase of the conductivity was attributed to donor electrons produced mainly by the pentavalent Sb ions in SnO2 lattice. However high input-gas ratio conditions produced an ATO film consisting of a mixture of SnO2 and very fine Sb2O5 phase. It was found that the deterioration of electrical conductivity and optical transmission of the film was caused by the deposition of fine Sb2O5 phase in the SnO2 matrix.

  • PDF

A Study on the Performances of Exhaust Gas Purification at Process on the Development of Corona Discharge Type Electrostatic Precipitator for Diesel Engines (디젤엔진용 코로나 방전식 전기집진장치의 개발 과정에서의 배기 정화 성능에 관한 기초연구)

  • Son, Byong-Ho;Bae, Jong-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.904-910
    • /
    • 2007
  • In this study an experimental research has been conducted to reduce NOx and smoke emission from diesel engine exhaust gas simultaneously by application of corona discharge type electrostatic precipitator(ESP). The ESP was installed between exhaust gas silencer and outlet terminal of exhaust gas system. The operating conditions as input parameters taken in this experiment were corona power input, gas velocity and equivalence ratio of gas. It was found that the corona discharge type ESP has notable effect on reducing smoke in exhaust gas but appeared to bring slight effect on reducing NOx.

Design and Output Characteristic of AC Pulse Current for MIG Welding of Ai Sheet (박판 Al MIG 용접용 AC펄스 전류 파형의 설계 및 출력특성)

  • 조상명;김태진;이창주;임성룡;공현상;김기정
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Since new types of vehicles or structures made from thin aluminum alloy are under rapid development and some products are already on the market, welding of aluminium sheet is increasing. MIG(Metal Inert Gas), MIG-Pulse, TIG(Tungsten Inert Gas) welding are the typical Ai welding. MIG welding has the advantage of high speed, but it is difficult to apply to the thin plate, because of bum-through by the high heat input and spatter. MIG-Pulse welding can weld without spatter and burn-through, but when the gap exists at the welding joint, there is quite a possibility of bum-through. TIG welding is difficult to weld at a high speed. AC Pulse welding alternates between DCEP(Direct Current Electrode Positive) and DCEN(Direct Current Electrode Negative). DCEN is higher wire melting rate than DCEP, while lower temperature of droplet than DCEP. In AC Pulse welding, far fixed welding current, wire melting rate increases as the EN ratio increases. For fixed wire feed rate, welding current decreases as the EN ratio increases. Because of these features, the temperature of droplet, the depth of penetration, the width of bead decrease and the reinforcement height increases as EN ratio increases, and these are able to weld at a high speed, lower heat input. It is the purpose of this study that design of AC pulse current waveform for MIG welding of Al sheet and estimation of output characteristic.