• Title/Summary/Keyword: Input concentration

Search Result 685, Processing Time 0.043 seconds

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

Demonstration and Operation of Pilot Plant for Short-circuit Nitrogen Process for Economic Treatment of High Concentration Nitrogen Wastewater (고농도 질소함유폐수의 경제적 처리를 위한 단축질소공정 파일럿플랜트 실증화 및 운영 결과)

  • Lee, Jae Myung;Jeon, Ji-hyeong;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.1
    • /
    • pp.53-64
    • /
    • 2020
  • A 2㎥/d combined wastewater treatment pilot plant containing the multi-stage vertical stacking type nitrification reactor was installed and operated for more than 1 year under the operating conditions of the short-circuit nitrogen process (pH 8, DO 1mg/L and Internal return rate 4Q from nitrification to denitrification reactor). For economically the combination treatment of food wastewater and the leachate from a landfill, the optimal combination ratio was operated by adjusting the food wastewater with the minimum oil content to 5-25% of the total throughput. The main treatment efficiency of the three-phase centrifugal separator which was introduced to effectively separate solids and oil from the food wastewater was about 52% of SS from 116,000mg/L to 55,700mg/L, and about 48% of normal hexane (NH) from 53,200mg to 27,800 mg/L. During the operational period, the average removal efficiency in the combined wastewater treatment process of BOD was 99.3%, CODcr 94.2%, CODmn 90%, SS 70.1%, T-N 85.8%, and T-P 99.2%. The average concentrations of BOD, CODcr, T-N, and T-P of the treated water were all satisfied with the discharge quality standard for landfill leachate ("Na" region), and SS was satisfied after applying the membrane process. On-site leachate had a relatively high nitrite nitrogen content in the combined wastewater due to intermittent aeration of the equalization tanks and different monthly discharges. Nevertheless nitrite nitrogen was accumulated, denitrification from nitrite nitrogen was observed rather than denitrification after complete nitrification. The average input of anti-forming chemical during the operation period is about 2L/d, which seems to be economical compared to the input of methanol required to treat the same wastewater.

Emergy Evaluation of the Estuarine Areas of Yeongsan River, Seomjin River, and Han River in Korea (영산강, 섬진강, 한강 하구역의 에머지 평가)

  • Lee, Chang-Hee;Kang, Dae-Seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • An emergy concept was used to evaluate the environment and economy of the estuarine areas of Yeongsan River, Seomjin River, and Han River in Korea. The emergy evaluations clearly showed ecological and socioeconomic characteristics of the estuarine areas that act as ecological and economic centers of surrounding areas. River, tide, and rain provided most of the renewable emergy inputs to the estuarine areas with their contribution to the total emergy input less than 8%. The estuarine areas mostly relied for their operation on the purchased emergy which accounted for $92{\sim}98%$ of the total emergy input to the systems. Emergy indices such as emergy use per unit area, population carrying capacity, environmental loading ratio, and emergy sustainability index revealed that the estuarine areas of Yeongsan River, Seomjin River, and Han River are not sustainable at the current level of economic activities in the areas. The ecological economic values of the environment of the areas were in the range of $7.29{\sim}22.06$ million Em\/ha/yr. They are more than twice that for the whole country, indicating the ecological and economic importance of the eatuarine areas. It is, therefore, urgent to establish and implement estuarine management policies to protect and restore the ecological and economic potentials of the estuarine areas of Yeongsan River, Seomjin River, and Han River. Management plans for the estuarine areas should include both demand-side measures such as reduction of population and economic concentration and consideration of ecological carrying capacity in planning stages for utilization and development of the areas, and supply-side ones such as restoration of degraded ecosystems and construction of new productive ecosystems.

  • PDF

Monitoring of Polycyclic Aromatic Hydrocarbons in Sediments and Organisms from Korean Coast

  • Moon Hyo-Bang;Choi Hee-Gu;Kim Sang-Soo;Jeong Seung-Ryul;Lee Pil-Yong;Ok Gon
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.4
    • /
    • pp.219-228
    • /
    • 2001
  • Surface sediments (0- 5 cm), mussels (Mytilus coruscus and M. edulis) and oysters (Crassostrea gigas) were sampled at 20 stations in Korean coast during a period of February to July 2000. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) content using gas chromatography coupled to mass spectrometer detector (GC/MSD). The sediment $\sum PAH$ concentration varied from 7 to 1,214 ng/g dry weight and the level of carcinogenic PAHs of six species ranged from 1 to 563 ng/g dry weight in surface sediments. In organisms, the levels of $\sum PAH$ were in the range of 63-876 ng/g dry weight and the concentrations of carcinogenic PAHs of six species were in the range of 4-582 ng/g dry weight. The highest PAH concentrations in sediments and organisms were in samples from Station 5 in Pohang coast and Station 8 in Jinhae coast, respectively. $\sum PAH$ concentrations in sediments and organisms collected from Korean coast were slightly low or comparable to those in other countries. The contribution of ring aromatic groups to sum of 16 PAHs in sediments and organisms showed a similar pattern for most stations. In sediments, the predominant contributions were four and five ring aromatics like fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene. In the organisms, four ring aromatics like fluoranthene, pyrene, benzo[a]anthracene and chrysene were predominant PAH species. Several molecular indices such as phenanthrene/anthracene, fluoranthene/pyrene and LMW/HMW ratio were used to identify the origin of PAH contamination in sediments. The results indicate that PAHs of Korean coast were mainly of pyro1ytic contaminants with slight petrogenic input. A high correlation within individual PAH compound in marine sediments was observed, while correlation in organisms showed a highly significant relationship for heavier molecular weight PAHs.

  • PDF

Distribution of Various Nitrogenous Compounds and Respiratory Oxygen Consumption Rate in Masan Bay, Korea During Summer 1986 (1986년 하계 마산만의 각종 질소화합물분포와 산소소비율에 대한 연구)

  • YANG, DONG-BEOM
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.303-310
    • /
    • 1992
  • Studies on the distribution of nitrogenous compounds, and respiratory oxygen consumption rate were carried out in Masan Bay, Korea where large amount of industrial and domestic wastewaters are discharged. In August 1986 the surface layer was significantly influenced by freshwater input. Below the seasonal pycnocline, an oxygen-deficient condition developed in a large area of Masan Bay. Concentrations of DIN, DON and PN were 735.6, 1261.8 and 48.5 umol/l at the head, and 79.1, 73.0 and 39.5 umol/l at the mouth of the inner Masan Bay, respectively. Phytoplankton carbon production was 2,695 mgC/m$^2$/day at the mouth of inner Masan Bay. Dissolved oxygen contents were lower than 1 ml/l from 3 m depth in inner Masan Bay and from 10 m depth in the outer Masan Bay. The high concentration of ammonium and phosphate in the lower layer suggests the active degradation of organic materials in the bottom waters and leaching from sediments. The ERS activity was 232.1 ul O$_2$/l/h in the surface waters of the innermost part of Masan Bay and respiratory oxygen consumption is likely to proceed at a rate of 442 ml O$_2$/m$^2$/day in the bottom waters of this bay. Nitrate removal rate was estimated to be 0.25 umol/l/day via denitrification in the bottom waters of the Masan Waterway. It is estimated from the ETS activity that, at the mouth of inner Masan Bay, 9.3-10.5% of carbon fixed in the upper layer was decomposed below the themocline.

  • PDF

Material Budgets in the Youngsan River Estuary with Simple Box Model (영산강 하구해역에서의 단순 박스모델에 의한 물질수지)

  • Lee, Kyeong-Sig;Jun, Sue-Kyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.248-254
    • /
    • 2009
  • Budgets of fresh water, salt, DIP and DIN in the Youngsan river estuary were estimated seasonally in order to clarify the characteristics of material cycling and flux of nutrients with a simple box model. Inflow volumes of freshwater into system was approximately $36.481{\times}10^6{\sim}663.634{\times}10^6m^3/month$ and existing water mass of freshwater in system calculated by salt budget was approximately $2.515{\times}10^6{\sim}5.812{\times}10^6m^3$. Mean residence time of freshwater was calculated to be about 0.26~2.03 day. water exchange $1,248{\times}10^6{\sim}9,489{\times}10^6m^3/month$ assumed with salinity between estuary and adjacent ocean. Inflow mass of DIN and DIN were approximately 76.63~1,149.91 ton/month and 2.91~61.22 ton/month, respectively. Residence times of DIP and DIN were calculated to be 0.45~1.10 day and 0.28~1.92 day, respectively. The ratio of water residence time versus DIP, DIN residence time was calculated that freshwater residence time was longer than DIP, DIN residence time except for summer season. Thus, We assume that circulation of Nutrients in the system will happen rapidly except for summer season. Specially DIP in Winter could assume to outer input source existence because of seawater inflow in system and high DIP concentration in open sea.

  • PDF

The Application of an Algal Fence for the Reduction of Algal Intake into the Water Intake Facility (조류펜스의 조류 저감 효과에 대한 실험적인 평가)

  • Jang, Min-Ho;Park, Sung-Bae;Jung, Jong-Mun;Roh, Jae-Soon;정광석, Kwang-Seuk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.467-472
    • /
    • 2003
  • In this study, an algal fence was developed and applied to reduce the input of algal scum into the water intake facility. The effectiveness of vertical algal fences(overlapped three types of meshes, (312 ${\mu}m$ ${\times}$ 375 ${\mu}m$, 390 ${\mu}m$ ${\times}$ 450 ${\mu}m$, and 0,7 cm ${\times}$ 1cm; vertical depth, 1.5 m; length of fence, about 120 m)) was experimentally tested at a water intake facility (Mulgum, lower Nakdong River). The application of the fence resulted in the statistically significant difference of algal biomass between inside and outside of the fence. According to ANOVA test, chi. a concentration in Day-1showed large difference at each depth of 0, 1, 2 m (0.001> p at each depth, n = 16 respectively). Especially large difference was observed at 0 and 1 m depth. However, the fence was only effective for a short period and its efficiency declined by Day-5after the installation. When better maintenance options for the fence are prepared, e.g. mechanical installation and periodic backwashing of the fence, the performance of algal fence may be sustained. In addition, reliable models for bloom prediction are required to provide an advanced indication of the optimal timing for the installation so that effective operation would be achieved.

An Analysis on the Effect of Industrial Technology R&D Investment on Employment (산업기술 R&D 투자의 고용창출효과 분석)

  • Kim, Ho-Young;Euh, Seung-Seob;Jun, Young-Doo;Yoo, Seung-Hoon
    • Journal of Korea Technology Innovation Society
    • /
    • v.17 no.4
    • /
    • pp.651-672
    • /
    • 2014
  • Under the diagnosis of low employment rate and low growth, the government regards the creation of new jobs through the creative and innovative R&D as an important national plans. This study attempts to measure the employment creation effect of R&D investment of industrial technology by using input-output analysis used in domestic and international broadly. The employment effect can be divided into employment inducement effect and direct employment effect. As a result of the analysis, The employment creation effect of R&D investment of government industrial technology is measured to be 8-12 peoples per 1 billion KRW investment. This results mean that government R&D investment is a effective policy for employment creation. And it is necessary to establish R&D policies that reflect the technical characteristics of the employment creation effect. In short term, it is important that the government invest the superior technology of total employment and direct employment as essential means of employment creation by selection and concentration strategy. In mid-long term, the government should focus on technology spread as technology transfer and opening innovation strategy for employment creation to support superior technology of employment inducement. The results of this study can be used in analysis on the employment creation effect related to industrial technology R&D.

Ozone Oxidation of PAHs in the Presence of Soil (I): Ozonation of Soil Slurry Phase (Ozone에 의한 PAHs 오염토양 복원 연구(I): 토양슬러리상 오존 산화)

  • Lim, Hyung-Nam;Kim, Ji-Yeon;Choi, Heechul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.869-877
    • /
    • 2000
  • A mechanism of ozonation of simulated soil slurry contaminated by phenanthrene and benzo[a]pyrene has been studied under various conditions. The effects of soil media(BS, S, GB), radical scavenger, ozone input ratio(0.17~0.73mg/min), bicarbonate ion, and humic acid were investigated, BS showed the highest removal efficiency in media tested. The generation of OH-radical via the catalytic decomposition of ozone on active sites of the natural sand was confirmed by OH-radical scavenger experiments. The enhanced removal efficiency by OH-radical was indirectly quantified to be about 22%. As initial concentration of humic acid(as sodium salt) was increased, pseudo first-order rate constant ($k_o$) of phenanthrene was decreased from $1.37{\times}10^{-2}s^{-1}$ to $0.53{\times}10^{-2}s^{-1}$. The amount of ozone required to oxidize 80% of the initial mass of phenanthrene(10mg/kg) and benzo[a]pyrene(10mg/kg) was 67.2mg/kg-soil and 48.0mg/kg-soil, respectively.

  • PDF

A Case Study on Chlorine Dioxide Usage at a Conventional Water Treatment Plant (기존 정수장 이산화염소 시범도입 사례연구)

  • Lee, Song-Hee;Lee, Byung-Doo;Kim, Jin-Keun;Seog, Kwon-Soo;Lee, Joung-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • As the regulations on DBPs are tightened, many water treatment plants (WTPs) in Korea have already introduced or will introduce enhanced coagulation, alternative disinfectants and advanced treatments such as ozonization and granular activated carbon to improve drinking water qualify. After a phenol leakage accident at the Nakdong-River in 1991, 26 WIPs in Korea introduced carbon dioxide generators, but there has been no accumulation of significant operating data. This research summarizes things that should be considered for the introduction of carbon dioxide disinfection process to WTPs based on one year operation data from A WTP that has had high concentration of DBP during a specific period in the summer. The removal efficiency of DBP was $30{\sim}40%$, but those of 2-MIB, Geosmin were less than 10%. The generation rate of $ClO_2$ by-products such as chlorite and chlorate were $70{\sim}100%$ of input dosage, but the ratios increased over time. At the same time, strong chlorine odors may be produced in the distribution system when $ClO_2$ was used with $Cl_2$ as a result of reaction between the chlorite and residual chlorine.