• Title/Summary/Keyword: Input Variable Uncertainty

Search Result 46, Processing Time 0.019 seconds

Shape Optimization of Electric Machine Considering Uncertainty of Design Variable by Stochastic Finite Element Method (확률유한요소법을 이용한 설계변수의 불확실성을 고려한 전기기기의 형상최적설계)

  • Hur, Jin;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.219-225
    • /
    • 2000
  • This paper presents the shape optimization considering the uncertainty of design variable to find robust optimal solution that has insensitive performance to its change of design variable. Stochastic finite element method (SFEM) is used to treat input data as stochastic variables. It is method that the potential values are series form for the expectation and small variation. Using correlation function of their variables, the statistics of output obtained form the input data distributed. From this, design considering uncertainty of design variables.

  • PDF

Reliability Analysis Under Input Variable and Metamodel Uncertainty Using Simulation Method Based on Bayesian Approach (베이지안 접근법을 이용한 입력변수 및 근사모델 불확실성 하에 서의 신뢰성 분석)

  • An, Da-Wn;Won, Jun-Ho;Kim, Eun-Jeong;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1163-1170
    • /
    • 2009
  • Reliability analysis is of great importance in the advanced product design, which is to evaluate reliability due to the associated uncertainties. There are three types of uncertainties: the first is the aleatory uncertainty which is related with inherent physical randomness that is completely described by a suitable probability model. The second is the epistemic uncertainty, which results from the lack of knowledge due to the insufficient data. These two uncertainties are encountered in the input variables such as dimensional tolerances, material properties and loading conditions. The third is the metamodel uncertainty which arises from the approximation of the response function. In this study, an integrated method for the reliability analysis is proposed that can address all these uncertainties in a single Bayesian framework. Markov Chain Monte Carlo (MCMC) method is employed to facilitate the simulation of the posterior distribution. Mathematical and engineering examples are used to demonstrate the proposed method.

Variable structure control for matched and unmatched uncertainty with quadratic criterion

  • Rhee, Bond-Jae;Park, Ju-Hyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.458-463
    • /
    • 1997
  • In this paper, we propose a variable structure control approach for the system with matched and unmatched uncertainty. By using time-varying sliding mode, the reaching mode is removed, and the design methodology represents a realistic design approach with quadratic criterion for systems incorporating both matched and unmatched uncertainties. The criterion contains states and linear part of input for all time. The practical application of the control strategy is presented in the design of a stability augmentation system for an aircraft is presented.

  • PDF

Control of a Segway with unknown control coefficient and input constraint

  • Park, Bong Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.140-146
    • /
    • 2016
  • This paper proposes a control method of the Segway with unknown control coefficient and input saturation. To design a simple controller for the Segway with the model uncertainty, the prescribed performance function is used. Furthermore, an auxiliary variable is introduced to deal with unknown time-varying control coefficient and input saturation problem. Due to the auxiliary variable, function approximators are not used in this paper although all model uncertainties are unknown. Thus, the controller can be simple. From the Lyapunov stability theory, it is proved that all errors of the proposed control system remain within the prescribed performance bounds. Finally, the simulation results are presented to demonstrate the performance of the proposed scheme.

A Dynamic Output Feedback Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 동적 출력 궤환 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2066-2072
    • /
    • 2010
  • In this paper, a variable structure dynamic output feedback controller with an transformed sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty, matched input matrix uncertainty, and disturbance satisfying some conditions. This paper is extended from the results of the static output feedback VSS in [9]. To effectively remove the reaching phase problems, an initial condition of the dynamic output is determined. The previous some limitations on the dynamic output feedback variable structure controller is overcome in this systematic design. A stabilizing control is designed to generate the sliding mode on the predetermined sliding surface S=0 and as a results the closed loop exponential stability is obtained and proved together with the existence condition of the sliding mode on S=0 for all unmatched system matrix uncertainties. To show the usefulness of the algorithm, a design example and computer simulations are presented.

A Static Output Feedback Integral Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 정적 출력 궤환 적분 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.411-416
    • /
    • 2010
  • In this paper, an integral variable structure static output feedback controller with an integral-augmented sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty and matched input matrix uncertainty and disturbance satisfying some conditions. To effectively remove the reaching phase problems, an output dependent integral augmented sliding surface is proposed. Its equivalent control and ideal sliding mode dynamics are obtained. The previous some limitations is overcome in this systematic design. A stabilizing control with the closed loop exponential stability is designed for all unmatched system matrix uncertainties and proved together with the existence condition of the sliding mode on S=0. To show the usefulness of the algorithm, a design example and computer simulations are presented.

A design of a robust adaptive fuzzy controller globally stabilizing the multi-input nonlinear system with state-dependent uncertainty (상태변수 종속 불확실성이 포함된 다입력 비선형 계통에 대한 전역 안정성이 보장되는 견실한 적응 퍼지 제어기 설계)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.297-305
    • /
    • 1996
  • In this paper a novel robust adaptive fuzzy controller for the nonlinear system with state-dependent uncertainty is proposed. The conventional adaptive fuzzy controller determines the function of state variable bounding the state-dependent uncertain term in the system dynamics on the local state space by off-line calculation. Whereas the proposed method determines that function by the fuzzy inference so that it guarantees the stability of the closed loop system globally on the whole state space. In addition, the method is applicable to the multi-input system. We applied the proposed method to the Burn Control of the Tokamak fusion reactor whose dynamics contains the state-dependent uncertainty and proved the effectiveness of the scheme by using the simulation results.

  • PDF

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranpiration Time Series. 2. Optimal Model Construction by Uncertainty Analysis (비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 2. 불확실성 분석에 의한 최적모형의 구축)

  • Kim, Sung-Won;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.89-99
    • /
    • 2007
  • Uncertainty analysis is used to eliminate the climatic variables of input nodes and construct the model of an optimal type from COMBINE-GRNNM-GA(Type-1), which have been developed in this issue(2007). The input variable which has the lowest smoothing factor during the training performance, is eliminated from the original COMBINE-GRNNM-GA (Type-1). And, the modified COMBINE-GRNNM-GA(Type-1) is retrained to find the new and lowest smoothing factor of the each climatic variable. The input variable which has the lowest smoothing factor, implies the least useful climatic variable for the model output. Furthermore, The sensitive and insensitive climatic variables are chosen from the uncertainty analysis of the input nodes. The optimal COMBINE-GRNNM-GA(Type-1) is developed to estimate and calculate the PE which is missed or ungaged and the $ET_r$ which is not measured with the least cost and endeavor Finally, the PE and $ET_r$. maps can be constructed to give the reference data for drought and irrigation and drainage networks system analysis using the optimal COMBINE-GRNNM-GA(Type-1) in South Korea.

The asymptotic tracking using variable structure control for a minimum phase nonlinear system (가변 구조 제어 방식을 이용한 최소위상 비선형 시스템의 점근적 경로 추적)

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.30-35
    • /
    • 2009
  • A new controller which can achieve the asymptotic tracking is proposed for the nonlinear system having a uncertainty in the input coefficient. A high gain observer is used to estimate the state variables when the nonlinear system has a modeling uncertainty. A variable structure control is used to achieve an asymptotic tracking, while ultimate boundness was achieved in the previous work. A Lyapunov analysis is used to justify the our proposal. The performance of proposed method is demonstrated via simulation.

  • PDF

A MIMO VSS with an Integral-Augmented Sliding Surface for Uncertain Multivariable Systems (불확실 다변수 시스템을 위한 적분 슬라이딩 면을 갖는 다입출력 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.950-960
    • /
    • 2010
  • In this paper, a multi-input multi-output(MIMO) integral variable structure system with an integral-augmented sliding surface is designed for the improved robust control of uncertain multivariable system under the matched persistent disturbance. To effectively remove the reaching phase problems, the integral augmented sliding surface is proposed. Then for its design, the eigenstructure assignment technique is introduced to. To guarantee the designed performance against the persistent disturbance, the stabilizing control for multi-input system is also designed to generate the sliding mode on the integral sliding surface. The stability of the global system together with the existence condition of the sliding mode are investigated and proved for the case of multi input system in the presence of uncertainty and disturbance. The reaching phase is completely removed in proposed MIMO VSS by satisfying the two requirements. An example and computer simulations will be present for showing the usefulness of algorithm.