• 제목/요약/키워드: Input Method

검색결과 10,317건 처리시간 0.036초

효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석 (Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System)

  • 김수인;전영진;이상범;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.519-524
    • /
    • 2023
  • 해싱 기반 이미지 검색에서는 조작된 이미지의 해시코드가 원본 이미지와 달라 동일한 이미지 검색이 어렵다. 본 논문은 이미지의 질감, 모양, 색상 등 특징 정보로부터 지각적 해시코드를 생성하는 자기 감독 기반 딥해싱 모델을 제안하고 평가한다. 비교 모델은 오토인코더 기반 변분 추론 모델들이며, 인코더는 완전 연결 계층, 합성곱 신경망과 트랜스포머 모듈 등으로 설계된다. 제안된 모델은 기하학적 패턴을 추출하고 이미지 내 위치 관계를 활용하는 SimAM 모듈을 포함하는 변형 추론 모델이다. SimAM은 뉴런과 주변 뉴런의 활성화 값을 이용한 에너지 함수를 통해 객체 또는 로컬 영역이 강조된 잠재 벡터를 학습할 수 있다. 제안 방법은 표현 학습 모델로 고차원 입력 이미지의 저차원 잠재 벡터를 생성할 수 있으며, 잠재 벡터는 구분 가능한 해시코드로 이진화 된다. CIFAR-10, ImageNet, NUS-WIDE 등 공개 데이터셋의 실험 결과로부터 제안 모델은 비교 모델보다 우수하며, 지도학습 기반 딥해싱 모델과 동등한 성능이 분석되었다.

인공신경망을 활용한 동적 물성치 산정 연구 (Neural Network-Based Prediction of Dynamic Properties)

  • 민대홍;김영석;김세원;최현준;윤형구
    • 한국지반공학회논문집
    • /
    • 제39권12호
    • /
    • pp.37-46
    • /
    • 2023
  • 동적 물성치는 지반의 상세한 거동을 예측하기 위한 필수인자이나, 샘플 채취와 추가적인 실험이 동반되는 한계가 있다. 본 연구의 목적은 정적 지반 물성치를 기반으로 동적 지반 물성치를 예측하는 것으로 인공신경망을 활용하고자 하였다. 정적 물성치는 점착력, 내부마찰각, 함수비, 비중 그리고 일축압축강도로 선정하였으며 출력 값인 동적물성치는 압축파 속도와 전단파 속도로 결정하였다. 인공신경망 적용시 결과값의 신뢰성을 높이기 위해 Levenberg-Marquardt와 Bayesian regularization 방법을 적용하였으며, 각 최적화 방법에 따른 신뢰성을 비교하였다. 인공신경망 모델의 정확도는 결정계수로 나타냈으며, train과 test 과정 모두 0.9 이상의 값을 보여 해당 연구에서 구축한 인공신경망의 신뢰성이 높은 것으로 나타났다. 또한, 구축된 인공신경망 모델의 검증을 위해 새로운 입력 데이터에 대해서도 출력값의 신뢰성을 검증하였으며, 그 결과 높은 정확도를 보였다.

Cycle-Consistent Generative Adversarial Network: Effect on Radiation Dose Reduction and Image Quality Improvement in Ultralow-Dose CT for Evaluation of Pulmonary Tuberculosis

  • Chenggong Yan;Jie Lin;Haixia Li;Jun Xu;Tianjing Zhang;Hao Chen;Henry C. Woodruff;Guangyao Wu;Siqi Zhang;Yikai Xu;Philippe Lambin
    • Korean Journal of Radiology
    • /
    • 제22권6호
    • /
    • pp.983-993
    • /
    • 2021
  • Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis. Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-rank test were performed to compare the objective measurements and the subjective image quality scores, respectively. Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared to standard-dose CT. Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of the chest for the evaluation of pulmonary tuberculosis.

기타의 음 합성을 위한 병렬 프로세서 구현 (Implementation of Parallel Processor for Sound Synthesis of Guitar)

  • 최지원;김용민;조상진;김종면;정의필
    • 한국음향학회지
    • /
    • 제29권3호
    • /
    • pp.191-199
    • /
    • 2010
  • 물리적 모델링은 실제 악기음과 유사한 고음질의 음을 합성하는 방법이다. 그러나 물리적 모델링은 악기의 소리를 합성할 때 필요한 수많은 파라미터들을 동시에 계산해야 하기 때문에 동시 발음수가 높은 악기의 경우 실시간 처리에 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 본 논문에서는 기타의 음 합성 알고리즘을 실시간으로 처리 가능한 단일 명령어 다중 데이터 (Single Instruction Multiple Data, SIMD)처리 방식의 병렬 프로세서를 제안한다. 대표적인 현악기인 기타의 6개 현을 제어하기 위해 6개의 프로세싱 엘리먼트 (Processing Element, PE)로 구성된 SIMD기반 병렬 프로세서를 사용하였다. 각각의 프로세싱 엘리먼트는 해당되는 기타 현을 모델링하며, 각 현의 여기신호와 파라미터를 합성 병렬 알고리즘의 입력으로 받아 동시에 6개 현의 합성된 음을 실시간으로 생성할 수 있다. 표본화 비율을 44.1 kHz로 설정하고 16비트 양자화 데이터의 음을 합성한 모의 실험 결과, 제안한 SIMD기반 병렬 프로세서를 이용한 합성음은 원음과 매우 유사하였으며, 상용 프로세서인 TI사의 TMS320C6416보다 실행 시간에서 8.9배, 에너지 효율에서 39.8배의 성능 향상을 보였다.

뮤직비디오 브라우징을 위한 중요 구간 검출 알고리즘 (Salient Region Detection Algorithm for Music Video Browsing)

  • 김형국;신동
    • 한국음향학회지
    • /
    • 제28권2호
    • /
    • pp.112-118
    • /
    • 2009
  • 본 논문은 모바일 단말기, Digital Video Recorder (DVR) 등에 적용할 수 있는 뮤직비디오 브라우징 시스템을 위한 실시간 중요 구간 검출 알고리즘을 제안한다. 입력된 뮤직비디오는 음악 신호와 영상 신호로 분리되어 음악 신호에서는 에너지기반의 음악 특징값 최고점기반의 구조분석을 통해 음악의 후렴 구간을 포함하는 음악 하이라이트 구간을 검출하고, SVM AdaBoost 학습방식에서 생성된 모델을 이용해 음악신호를 분위기별로 자동 분류한다. 음악신호로부터 검출된 음악 하이라이트 구간과 영상신호로부터 검출된 가수, 주인공의 얼굴이 나오는 영상장면을 결합하여 최종적으로 중요구간이 결정된다. 제안된 방식을 통해 사용자는 모바일 단말기나 DVR에 저장되어 있는 다양한 뮤직비디오들을 분위기별로 선택한 후에 뮤직비디오의 30초 내외의 중요구간을 빠르게 브라우징하여 자신이 원하는 뮤직비디오를 선택할 수 있게 된다. 제안된 알고리즘의 성능을 측정하기 위해 200개의 뮤직비디오를 정해진 수동 뮤직비디오 구간과 비교하여 MOS 테스트를 실행한 결과 제안된 방식에서 검출된 중요 구간이 수동으로 정해진 구간보다 사용자 만족도 측면에서 우수한 결과를 나타내었다.

챗GPT를 활용한 기록관리 메타데이터 추출 사례연구 (A Case Study on Metadata Extractionfor Records Management Using ChatGPT)

  • 김민지;강성희;이해영
    • 한국기록관리학회지
    • /
    • 제24권2호
    • /
    • pp.89-112
    • /
    • 2024
  • 기록관리에서 메타데이터는 기록을 구성하는 필수 요소 중 하나로 기록물을 적절하게 관리하고 이해하도록 하는데 매우 중요한 역할을 한다. 기록관리 업무에서 메타데이터 요소들의 자동 부여가 불가능할 경우에는 기록전문가가 메타데이터 값을 직접 입력해야 한다. 이러한 업무의 불편함을 개선하기 위해 본 연구에서는 신기술인 챗GPT를 활용하여 기록관리 메타데이터 요소의 추출 방안을 제시하고자 하였다. 챗GPT 기술을 활용하기 위해 파이썬 프로그램과 랭체인 라이브러리를 이용하여 PDF 문서를 제시하고 질문을 통해 기록물의 메타데이터를 추출해보았고, 챗GPT 온라인 서비스를 통해 여러 건의 PDF 문서를 첨부하여 기록물의 메타데이터 요소를 추출해보았다. 그 결과 챗GPT-3.5 turbo를 사용한 랭체인에서는 보안상으로는 안전한 추출 방법이긴 하나 메타데이터의 정확한 요소를 얻기에는 다소 한계가 있었고, 챗GPT-4 온라인 서비스에서는 보안상 중요 문서를 첨부할 수 없지만 비교적 정확한 결과를 추출하였다. 이를 통해 기록관리에서의 메타데이터 추출을 위한 챗GPT 기술 활용의 가능성을 타진할 수 있었고, 챗GPT 관련 기술의 발달에 따라 좀 더 안전하고 정확한 결과 추출이 가능해질 것이다. 이러한 챗GPT의 장점을 활용함으로써 기록관에서 기록 및 메타데이터의 관리적 측면에서 업무의 효율성 및 생산성을 증대시키는데 도움을 줄 수 있을 것이라 기대한다.

전국 고속철도 역세권의 개발 사업여건 및 잠재수요 특성 분석 (Analysis of Development Project Conditions and Potential Demand Characteristics in High-Speed Rail Station Areas)

  • 배성호;마강래;김찬호
    • 지역연구
    • /
    • 제40권2호
    • /
    • pp.75-89
    • /
    • 2024
  • 비수도권 중소도시의 도시서비스 효율성 저하 문제가 심화됨에 따라 지역거점을 통한 압축적 도시 공간을 형성하고자 철도역세권 개발의 필요성이 강조되고 있다. 대도시 주요 역세권은 복합단지 형태로의 개발이 이루어지고 있지만, 중소도시 역세권의 개발 입지적 특성에 대한 분석은 부족한 실정이다. 본 연구는 전국의 고속철도 역세권을 대상으로 개발 사업여건과 잠재수요의 특성을 분석하여 수도권 대도시, 비수도권 대도시, 비수도권 중소도시의 도시유형에 따른 입지적 특성 차이를 파악하고, 이에 적합한 개발방식을 알아보는 것을 목적으로 한다. 분석결과, '수도권 대도시 역세권'은 높은 잠재수요와 열악한 사업여건을 갖고 있는 것으로 분석되었다. 반면에 비수도권의 경우에는, '중소도시 역세권'은 양호한 사업여건과 낮은 잠재수요의 특징, '대도시 역세권'은 중간적 성격을 가지는 것으로 분석되었다. 이는 대도시와 중소도시 역세권 개발에 있어 서로 다른 개발방식의 필요성을 시사한다. 본 연구의 분석결과는 대규모 비용의 투입이 필요한 대도시 역세권은 잠재수요를 극대화하기 위한 민간참여형 사업을, 중소도시 역세권은 양호한 사업여건을 바탕으로 공공주도형 사업을 진행하거나 지역 특성에 기반한 개발을 통해 민간참여를 유도하는 것이 바람직함을 보여주고 있다.

머신 러닝을 활용한 회사 SNS 메시지에 내포된 심리적 거리 추출 연구 (A Study on the Extraction of Psychological Distance Embedded in Company's SNS Messages Using Machine Learning)

  • 이성원;김진혁
    • 경영정보학연구
    • /
    • 제21권1호
    • /
    • pp.23-38
    • /
    • 2019
  • 소셜 네트워크 서비스(이하 SNS)는 회사의 마케팅 채널로 적극 활용되고 있으며, 회사들의 고객층에 적합한 내용과 어조를 활용하여 주기적으로 SNS 메시지를 작성하는 등 활발한 마케팅을 펼치고 있다. 본 논문에서는 이제까지 간과되었던 SNS 메시지에 내포된 심리적 거리에 초점을 맞춰 전통적인 코더를 활용한 내용 분석(content analysis)과 자연어 처리 기법 및 머신 러닝 방법을 혼합하여 심리적 거리를 측정하는 분석 방법을 연구하였다. SNS 메시지의 심리적 거리 분석을 위해 코더들을 활용하여 내용분석을 수행하였으며, 이와 같은 방법으로 레이블링된 데이터를 자연어 처리 방법을 이용하여 워드 임베딩을 수행함으로써 머신 러닝 수행을 위한 입력 데이터를 마련하였다. 머신 러닝 분석법 중 Support Vector Machine(SVM)을 이용하여 SNS 메시지와 심리적 거리 간의 관계를 학습시켰으며, 마지막으로 테스트 데이터를 이용하여 심리적 거리를 예측함으로써 머신 러닝 분석의 성과를 검증하였다. 심리적 거리측정 방법론 수행 결과, 코더들의 내용분석 결과가 특정 값으로 편향되어 SVM 예측의 민감도와 정밀도가 낮은 결과가 도출되었다. 심리적 거리 응답 비율을 보정하고 코더들의 1차 내용분석 결과 중 답변이 일치한 데이터로 한정지어 머신 러닝을 실행한 결과 심리적 거리 예측의 정확도, 민감도, 특이도, 정밀도 모두 향상되어 심리적 거리가 70% 이상 예측되는 성과를 보였다. 본 연구는 SNS 메시지의 심리적 거리를 측정하는 방법을 제시함으로써 독자와의 심리적 거리를 제어 가능한 전략 요소로 활용 가능하게 할 것이라 기대된다.

스미스 차트를 이용한 구리 인터커텍트의 비파괴적 부식도 평가 (Nondestructive Quantification of Corrosion in Cu Interconnects Using Smith Charts)

  • 강민규;김남경;남현우;강태엽
    • 마이크로전자및패키징학회지
    • /
    • 제31권2호
    • /
    • pp.28-35
    • /
    • 2024
  • 전자패키지 내부의 부식이 시스템 성능 및 신뢰성에 큰 영향을 미치고 있어, 시스템 건전성 관리를 위해 부식에 대한 비파괴적 진단 기법의 필요성이 커지고 있다. 본 연구에서는 복소 임피던스의 크기와 위상을 통합적으로 시각화하는 도구인 스미스 차트를 활용하여, 구리 인터커넥트의 부식을 비파괴적으로 평가하는 방법을 제시하고자 한다. 실험을 위해 구리 전송선을 모사한 시편을 제작하고, MIL-STD-810G 기준 온습도 사이클에 노출시켜 시편에 부식을 인가하였다. R 채널 기반 색변화로 시편의 부식도를 정량적으로 평가하고 레이블링 하였다. 부식의 성장에 따라 시편의 S-파라미터와 스미스 차트를 측정한 결과, 5 단계의 부식도에 따라 유의미한 패턴의 변화가 관찰되어, 스미스 차트가 부식도 평가에 효과적인 도구임을 확인하였다. 더 나아가 데이터 증강을 통해 다양한 부식도를 갖는 4,444개의 스미스 차트를 확보하여, 스미스 차트를 입력 받아 구리 인터커넥트의 부식 단계를 출력하는 인공지능 모델을 학습시켰다. 이미지 분류에 특화된 CNN 및 Transfomrer 모델을 적용한 결과, ConvNeXt 모델이 정확도 89.4%로 가장 높은 부식 진단 성능을 보였다. 스미스 차트를 이용하여 전자패키지 내부 부식을 진단할 경우, 전자신호를 이용하는 비파괴적 평가를 수행할 수 있다. 또한. 신호 크기와 위상 정보를 통합적으로 시각화 하여 직관적이며 노이즈에 강건한 진단이 가능할 것으로 기대한다.

충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구 (Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model)

  • 양지수;유경근;서주범;한성수
    • 자원리싸이클링
    • /
    • 제33권3호
    • /
    • pp.38-47
    • /
    • 2024
  • 몰리브데나이트는 몰리브덴의 주요 광물자원으로 고유의 소수성 표면으로 인해 부유선별을 통해 회수된다. 한편, 채광되는 몰리브데나이트의 결정크기 및 품위가 낮아지고 있다. 이로 인해, 단체분리에 요구되는 광물 크기가 작아짐으로써, 부유선별에 투입되는 원광 크기 또한 미립화되고 있다. 미립자는 기포와의 충돌확률이 낮아, 부유선별할 때 효율 감소를 유발시킨다. 이에 따라, 몰리브덴 확보를 위해서는 미립 몰리브데나이트에 대한 부유선별 연구가 필요한 실정이다. 본 연구에서는 5-30 ㎛의 미립 몰리브데나이트의 부유선별 효율을 향상시킬 수 있는 방안을 제안하였다. 기포크기 축소와 입자응집을 통한 효율 증진으로 접근하였다. 기포-입자 충돌확률을 시뮬레이션과 부유선별 실험을 통해, 미립자의 부유선별 효율이 향상될 수 있는 기포크기 및 입자응집체 크기에 대한 범위를 정량적으로 결정하였다. 결과적으로 본 연구에서 제공한 미립 몰리브덴광 부유선별 조건은 향후 몰리브덴 선광 플랜트의 부유선별 공정을 향상시키는 데 활용될 예정이다.