• Title/Summary/Keyword: Input Impedance

Search Result 654, Processing Time 0.027 seconds

Harmonic seismic waves response of 3D rigid surface foundation on layer soil

  • Messioud, Salah;Sbartai, Badredine;Dias, Daniel
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.109-118
    • /
    • 2019
  • This study, analyses the seismic response for a rigid massless square foundation resting on a viscoelastic soil layer limited by rigid bedrock. The foundation is subjected either to externally applied forces or to obliquely incident seismic body or surface harmonic seismic waves P, SV and SH. A 3-D frequency domain BEM formulation in conjunction with the thin layer method (TLM) is adapted here for the solution of elastodynamic problems and used for obtained the seismic response. The mathematical approach is based on the method of integral equations in the frequency domain using the formalism of Green's functions (Kausel and Peck 1982) for layered soil, the impedance functions are calculated by the compatibility condition. In this study, The key step is the characterization of the soil-foundation interaction with the input motion matrix. For each frequency the impedance matrix connects the applied forces to the resulting displacement, and the input motion matrix connects the displacement vector of the foundation to amplitudes of the free field motion. This approach has been applied to analyze the effect of soil-structure interaction on the seismic response of the foundation resting on a viscoelastic soil layer limited by rigid bedrock.

Prediction Method of Loudspeaker Driver Characteristics (스피커 드라이브 특성 예측 기법)

  • Park, Soon-Jong;Rho, Sung-Tak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.325-332
    • /
    • 2008
  • The prediction method of TS parameters, frequency response, and electrical input impedance is proposed with physical properties of parts and results of electromagnetic FEA(Finite Element Analysis) in a loudspeaker driver design. In design for weight reduction and improvement of flux density asymmetry, the prediction results are well coincided with measurement ones. As the applications, it can be applied in design for improvement of the $2^{nd}$ harmonic distortion with flux density distribution analysis. The proposed method is expected to be utilized for reducing trial-and-error process in electromagnetic parts design. It can also be used for providing guidelines for parts selection in the early stages.

A Study on the Output Voltage Characteristic of Switched Trans Z-Source Inverter (스위치드 변압기 Z-소스 인버터의 출력전압 특성에 관한 연구)

  • Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • This paper proposes the switched trans Z-source inverter(STZSI) which combined the characteristics of the trans Z-source inverter(TZSI) and the switched inductor Z-source inverter(SLZSI). The proposed STZSI has the same performance compared with the SLZSI which is improved the voltage boost performance of the conventional typical X-shaped ZSI, and it has advantage that circuit structure of Z-impedance network is more simple. And, in order to step up the voltage boost factor under the condition of the same duty ratio, unlike the SLZSI adding the inductors and diodes, the proposed method is dune by changing the turn ratio of trans primary winding of Z-impedance network. To confirm the validity of the proposed method, PSIM simulation and a DSP(TMS320F28335) based experiment were performed using trans with turn ratio 1 and 2 under the condition of the input DC voltage VI=50V, duty ratio D=0.1 and D=0.15. As a result, under the same input/ouput condition, the inverter arm voltage stress of the proposed method is reduced to about 15%-22% as compared with typical X-shaped ZSI, and the elements in Z-impedance network of the proposed method is reduced as compared with the SLZSI.

A New Type of Yagi-Uda Antenna for High Terahertz Output Power (고출력 테라헤르츠파 발생을 위한 새로운 구조의 Yagi-Uda 안테나)

  • Han, Kyung-Ho;Park, Yong-Bae;Kim, Sang-In;Park, Ik-Mo;Lim, Han-Jo;Han, Hae-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • In this paper, a new type of Yagi-Uda antenna that operates in the terahertz frequencies is designed. The proposed Yagi-Uda antenna can obtain high input resistance of approximately $2000{\Omega}$ at the resonance frequency by using a full-wavelength dipole instead of a half-wavelength dipole as the driver element. The current leakage into the bias line was minimized by applying the photonic bandgap structure to the bias line. By designing the antenna on a thin substrate, the impedance lowering of an antenna caused by the relative dielectric constant of the substrate was prevented and the end-fire radiation pattern which is the original radiation characteristic of the Yagi-Uda antenna could be obtained. We expect that the proposed Yagi-Uda antenna can achieve increased terahertz output power by improving the impedance mismatching problem with the photomixer.

Application of Piezoelectric Smart Structures for Statistical Energy Analysis (압전 지능 구조물을 이용한 통계적 에너지 해석 기법)

  • 김재환;김정하;김재도
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.257-264
    • /
    • 2001
  • In this research, piezoelectric smart structures are applied for SEA(Statistical Energy Analysis), which is well known approach for high frequency analysis. A new input power measurement based on piezoelectric electrical power measurement is proposed and compared with the conventional method in SEA. As an example, a simple aluminum beam on which piezoelectric actuator is attached is considered. By measuring the electrical impedance and electrical current of the piezoelectric actuator, the electrical power given on the actuator is found and this is In turn converted into the mechanical energy. From the measured value of the stored energy of the beam, the Internal loss factor is calculated and this value shows a good agreement with that given by the conventional method as well as the theoretical value. To compare the coupling loss factor, L-shape beam system which consists of a aluminum beam subsystem and a steel beam subsystem coupled by three pin is taken as second example. The input power and stored energy of each subsystem are found by the proposed approach. The coupling loss factor found by the electrical input power obtained from the piezoelectric actuator exhibits similar trend to the value found by the conventional method as well as the theoretical value. In conclusion, the use of SEA for high frequency application of piezoelectric smart structures is Possible. Especially, the input power that is essential for SEA can be found accurately by measuring the electrical input power of the piezoelectric actuator.

  • PDF

Wideband 6-port Phase Correlator Using Caxial Cable Impedance Transformer and Wireline Coupler (동축선 임피던스 변환기와 Wireline Coupler를 이용한 광대역 6-단자 위상 상관기)

  • Park, Ung-hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1188-1195
    • /
    • 2022
  • The 6-port phase correlator consists of one in-phase power divider and three 3-dB 90-degree phase difference power dividers, and is mainly used in a demodulation circuit that determines the phase of an input signal. This paper proposes the wideband 6-port phase correlator that consists of an in-phase power divider using a wideband 2:1 impedance transformer with three 37.5-Ω coaxial cables, and a 3-dB 90-degree phase difference power divide using Wireline. The proposed wideband phase correlator fabricated at a center frequency of 1000MHz has the value of the input reflection coefficient(S11 and S22) -14dB or less in the frequency range of 640~1270MHz. Also, the signal transmission characteristic(Si1), from the in-phase power divider input port to four output ports, has the amplitude of -6.5±0.6dB and the phase error of within ±3.4°, and the signal transmission characteristic(Si2), from the 90 degree phase difference power divider input port to four output ports, has the amplitude of -6.1±0.6dB and the phase error of within ±6.2°.

HF-Band Wireless Power Transfer System with Adaptive Frequency Control Circuit for Efficiency Enhancement in a Short Range (근거리에서 효율 향상을 위해 적응 주파수 제어 회로를 갖는 HF-대역 무선 전력 전송 시스템)

  • Jang, Byung-Jun;Won, Do-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1047-1053
    • /
    • 2011
  • In this paper, we proposed an HF-band wireless power transfer system with adaptive frequency control circuit for efficiency enhancement in a short range. In general, a wireless power transfer system shows an impedance mismatching due to a reflected impedance, because a coupling coefficient is varied with respect to separation distance between two resonating loop antennas. The proposed method can compensate this impedance mismatching by varying input frequency of a voltage-controlled oscillator adaptively with respect to separation distance. Therefore, transmission efficiency is enhanced in a short distance, where large impedance mismatch occurs. The adaptive frequency circuit consists of a directional coupler, a detector, and a loop filter. In order to demonstrate the performance of the proposed system, a wireless power transfer system with adaptive frequency control circuits is designed and implemented, which has a pair of loop antennas with a dimension of 30${\times}$30 $cm^2$. From measured results, the proposed system shows enhanced efficiency performance than the case without adaptive frequency control.

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

A Study on the Contiguous-Band Waveguide Manifold Diplexer (contiguous 대역을 갖는 도파관 Manifold 다이플랙서에 관한 연구)

  • 박주래;임정수;한석태;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.5
    • /
    • pp.36-44
    • /
    • 1993
  • In this paper, a simple design method is represented for a contiguous-band waveguide manifold diplexer which employs a half-wavelength line at the input port of the singly terminated bandpass filterand has resonant-slot coupled E-plane T-junctions. This design method is based on the fact that the input impedance characteristics of the singly terminated bandpass filter are approximately unchanged when a resonant slot and a half-wavelength line at the input port of the filter are employed. This design method is also applicable to the design of the multiplexer. A contiguous-band waveguide manifold diplexer using the post coupled cavity filters is designed, constructed, and tested. The computed and experimental results show the validity of the theory.

  • PDF