• Title/Summary/Keyword: Input Faults

Search Result 174, Processing Time 0.024 seconds

Analysis of Sensor Fault Effect in Induction Motor Drives (유도전동기 드라이브 시스템에서 센서 고장효과 분석)

  • 이기상;류지수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.5
    • /
    • pp.126-133
    • /
    • 2003
  • High performance induction motor drives are driven by two advanced control methods: vector control and direct torque control (DTC). In order to apply the control methods to the speed/position control systems, the informations on rotor speed and rotor or stator flux are required. The speed is measured by encoder, and the rotor or stator flux is estimated by using the motor parameters and measured currents. The control input generated on the basis of the information that is provided by abnormal sensors should be far from the desired value and deteriorates the overall control perfonnance. In this paper, the effects of sensor faults on the motor variables and the control performance of induction motor drives are analyzed by both theoretical approach and simulation study. The presented analysis results could be utilized for the purpose of developing a fault detection and isolation scheme in induction motor drives.

THE STRUCTURE, STRATIGRAPHY AND PETROLEUM GEOLOGY OF THE MURZUK BASIN, SOUTHWEST LIBYA

  • JHO Jhoon Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • autumn
    • /
    • pp.57-72
    • /
    • 2000
  • The Murzuk Basin covers an area in excess of $350,000{\cal}km^2$, and is one of several intra-cratonic sag basins located on the Saharan Platform of North Africa. Compared with some of these basins, the Murzuk Basin has a relatively simple structure and stratigraphy, probably as a result of it's location on a the East Saharan Craton. The basin contains a sedimentary fill which reaches a thickness of about $4,000{\cal}m$ in the basin centre. This fill can be divided into a predominantly marine Paleozoic section, and a continental Mesozoic section. The principal hydrocarbon play consists of a glacial-marine sandstone reservoir of Cambro-Ordovician age, sourced and sealed by overlying Silurian shales. The present day borders of the basin are defined by tectonic uplifts, each of multi-phase generation, and the present day basin geometry bears little relation to the more extensive Early Palaeozoic sedimentary basin within which the reservoir and source rocks were deposited. The key to the understanding of the Cambro-Ordovician play is the relative timing of oil generation compared to the Cretaceous and Tertiary inversion tectonics which influenced source burial depth, reactivated faults and reorganised migration pathways. At the present day only a limited area of the basin centre remains within the oil generating window. Modelling of the timing and distribution of source rock maturity uses input data from AFTA and fluid inclusion studies to define palaeo temperatures, shale velocity work to estimate maximum burial depth and source rock geochemistry to define kinetics and pseudo-Ro. Migration pathways are investigated through structural analysis. The majority of the discovered fields and identified exploration prospects in the Murzuk Basin involve traps associated with high angle reverse faults. Extensional faulting occurred in the Cambro-Ordovician and this was followed by repeated compressional movements during Late Silurian, Late Carboniferous, Mid Cretaceous and Tertiary, each associated with regional uplift and erosion.

  • PDF

An On-The-Fly Testing Technique of Embedded Software using Aspect Components (Aspect 컴포넌트를 이용한 임베디드 소프트웨어의 모듈 단위 On-The-Fly 테스팅)

  • Kim, Jong-Phil;Hong, Jang-Eui
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.785-792
    • /
    • 2008
  • In spite of the various techniques on the testing of embedded software, operation failures of embedded systems such as robot or satellite applications, are occurred frequently. The critical reason of these failures is due to the fact that software is embedded into a target system with inherent faults. Therefore, in order to prevent the failure owing to such faults, it needs a technique to test the embedded software which operates in real environment. In this paper, we propose a testing technique, aspect-based On-the-Fly testing that is to test the functionality and performance at real operation time. Our proposed technique gives some benefits of real test of unexpected input conditions, prevention of software malfunction, and reusability of aspect components for the testing.

The Implementation of Hardware Verification System Using Fault Injection Method (결함 주입 방법을 이용한 하드웨어 검증시스템 구현)

  • Yoon, Kyung-Shub;Song, Myoung-Gyu;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.267-273
    • /
    • 2011
  • In hardware design, its stability and reliability are important, because a hardware error can cause serious damages or disaster. To improve stability and reliability, this paper presents the implementation of the hardware verification system using the fault injection method in PC environment. This paper presents a verification platform that can verify hardware system reliably and effectively, through a process to generate faults as well as insert input signals into the actual running system environment. The verification system is configured to connect a PC with a digital I/O card, and it can transmit or receive signals from the target system, as a verifier's intention. In addition, it can generate faults and inject them into the target system. And it can be monitored by displaying the received signals from the target system to the graphical wave signals. We can evaluate its reliability by analyzing the graphical wave signals. In this paper, the proposed verification system has been applied to the FPGA firmware of a nuclear power plant control system. As a result, we found its usefulness and reliability.

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

A Study on Fault Model end Performance Evaluation under Power Switch Open Fault in an Inverter-Driven Permanent Magnets Synchronous Motor (영구자석 동기전동기 구동 인버터 스위치의 개방 고장에 의한 제어 특성해석 및 고장모델 연구)

  • Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.40-51
    • /
    • 2009
  • To analyze influences under open faults in switching devices of the PWM inverter and under the isolation between the inverter and motor terminal, a faulty model for the inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control AC motor, it can not be used under open faults in switching devices since the 3-phase balanced condition is no longer hold under the open fault and it is not easy to obtain motor input voltages in open phase from the pole voltage. To deal with this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is derived by using the line voltage of motor according to switch open, which can be effectively used for performance evaluation of the diagnostic algorithm. The validity of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335.

Stability Analysis on the Substructure of Abutment in Limestone Basin (석회암층 교대 하부 구조물의 안정성 해석)

  • 최성웅;김기석
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • Natural cavitied were found at shallow depth during construction of a huge bridge in Cambro-Ordovician Limestone Basin in the central part or Korea. The distribution patterns of cavities in this area were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map focusing the route of the Proposed highway. It suggested that there were three faults in this wet and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied first on the specific area that was selected by results from the geological survey. Many evidences far cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target wet which was focused by results from the electrical resistivity Prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced Based on the project result, finally, most of fecundations far the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF

Design of a Timing Error Detector Using Built-In current Sensor (내장형 전류 감지회로를 이용한 타이밍 오류 검출기 설계)

  • Kang, Jang-Hee;Jeong, Han-Chul;Kwak, Chol-Ho;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.12-21
    • /
    • 2004
  • Error control is one of major concerns in many electronic systems. Experience shows that most malfunctions during system operation are caused by transient faults, which often mean abnormal signal delays that may result in violations of circuit element timing constraints. This paper presents a novel CMOS-based concurrent timing error detector that makes a flip-flop to sense and then signal whether its data has been potentially corrupted or not by a setup or hold timing violation. Designed circuit performs a quiescent supply current evaluation to determine timing violation from the input changes in relation to a clock edge. If the input is too close to the clock time, the resulting switching transient current in the detection circuit exceeds a reference threshold at the instant of the clock transition and an error is flagged. The circuit is designed with a $0.25{\mu}m$ standard CMOS technology at a 2.5 V supply voltage. The validity and effectiveness are verified through the HSPICE simulation. The simulation results in this paper shows that designed circuit can be used to detect setup and hold time violations effectively in clocked circuit element.

  • PDF

A Design of Power Management and Control System using Digital Protective Relay for Motor Protection, Fault Diagnosis and Control (모터 보호, 고장진단 및 제어를 위한 디지털 보호계전기 활용 전력감시제어 시스템 설계)

  • Lee, Sung-Hwan;Ahn, Ihn-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.516-523
    • /
    • 2000
  • In this paper, intelligent methods using digital protective relay in power supervisory control system is developed in order to protect power systems by means of timely fault detection and diagnosis during operation for induction motor which has various load environments and capacities in power systems. The spectrum pattern of input currents was used to monitor to state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrums pattern caused by faults were detected. For diagnosis of the fault detected, the fuzzy fault tree was derived, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, was solved. The solution of the fuzzy relation equation shows the possibility of each fault's occurring. The results obtained are summarized as follows: 1) The test result on the basis of KEMC1120 and IEC60255, show that the operation time error of the digital motor protective relay is improved within ${\pm}5%$. 2) Using clustering algorithm by unsupervisory learning, an on-line fault detection method, not affected by the characteristics of loads and rates, was implemented, and the degree of dependency by experts during fault detection was reduced. 3) With the fuzzy fault tree, fault diagnosis process became systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF