• Title/Summary/Keyword: Inorganic scintillator

Search Result 15, Processing Time 0.022 seconds

In Situ Gamma-ray Spectrometry Using an LaBr3(Ce) Scintillation Detector

  • Ji, Young-Yong;Lim, Taehyung;Lee, Wanno
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.85-96
    • /
    • 2018
  • Background: A variety of inorganic scintillators have been developed and improved for use in radiation detection and measurement, and in situ gamma-ray spectrometry in the environment remains an important area in nuclear safety. In order to verify the feasibility of promising scintillators in an actual environment, a performance test is necessary to identify gamma-ray peaks and calculate the radioactivity from their net count rates in peaks. Materials and Methods: Among commercially available scintillators, $LaBr_3(Ce)$ scintillators have so far shown the highest energy resolution when detecting and identifying gamma-rays. However, the intrinsic background of this scintillator type affects efficient application to the environment with a relatively low count rate. An algorithm to subtract the intrinsic background was consequently developed, and the in situ calibration factor at 1 m above ground level was calculated from Monte Carlo simulation in order to determine the radioactivity from the measured net count rate. Results and Discussion: The radioactivity of six natural radionuclides in the environment was evaluated from in situ gamma-ray spectrometry using an $LaBr_3(Ce)$ detector. The results were then compared with those of a portable high purity Ge (HPGe) detector with in situ object counting system (ISOCS) software at the same sites. In addition, the radioactive cesium in the ground of Jeju Island, South Korea, was determined with the same assumption of the source distribution between measurements using two detectors. Conclusion: Good agreement between both detectors was achieved in the in situ gamma-ray spectrometry of natural as well as artificial radionuclides in the ground. This means that an $LaBr_3(Ce)$ detector can produce reliable and stable results of radioactivity in the ground from the measured energy spectrum of incident gamma-rays at 1 m above the ground.

A Study of the Inorganic Scintillator Properties for a Phoswich Detector (Phoswich 검출기 제작을 위한 무기 섬광체 특성 연구)

  • Lee, Woo-Gyo;Kim, Yong-Kyun;Kim, Jong-Kyung;Tarasov, V.;Zelenskaya, O.
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.251-256
    • /
    • 2004
  • CsI(Tl), $CdWO_4(CWO),\;Bi_4Ge_3O_{12}(BGO)\;and\;Gd_2SiO_5:Ce(GSO)$ scintillators were studied to manufacture a phoswich detector. The maximum wavelengths of the CsI(Tl), CWO, BGO and GSO scintillators are 550 nm, 475 nm, 490 nm and 440 nm for the radioluminescence, and the absolute light outputs of the CsI(Tl), CWO, BGO and GSO scintillators are 54890 phonon/MeV, 17762 phonon/MeV, 8322 phonon/MeV and 8932 phonon/MeV with a neutral filter, and the decay time of the CsI(Tl), CWO, BGO and GSO scintillators is $1.3{\mu}s,\;8.17{\mu}s$, 213 ns and 37 ns by a single photon method. The phoswich detector which was manufactured with plastic and CsI(Tl) scintillators could separate the ${\beta}$ particle and ${\gamma}$ ray. The phoswich detector could also measure the pulse height spectra of the ${\beta}$ particle and ${\gamma}$ ray by a PSD method.

Radioactive Concentrations in Chemical Fertilizers

  • Gwang-Ho Kim;Jae-Hwan Cho
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.195-203
    • /
    • 2022
  • Background: The aim of the present study was to determine radioactive concentrations in fertilizers known to contain essential nutrients. Results of this study could be used as basic data to monitor the impact of chemical fertilizers on the environment and public health. Nitrogen fertilizers, calcium fertilizers, sulfur fertilizers, phosphate acid fertilizers, and potassium chloride fertilizers were used in this study. Materials and Methods: Five chemical fertilizers were pulverized, placed in polyethylene containers, and weighed. The time to measure each specimen was set to be 3,600 seconds for a scintillator-based gamma-ray spectroscopy system. Concentration of gamma radionuclide was analyzed based on obtained spectra. At the end of the measurement, the spectrum file was stored and used to calculate radioactive concentrations using a gamma-ray spectrometer software. Results and Discussion: In the nitrogen fertilizer, 3.49 ± 5.71 Bq/kg of 137Cs, 34.43 ± 7.61 Bq/kg of 134Cs, and 569.16 ± 91.15 of 40K were detected whereas 131I was not detected. In the calcium fertilizer, 5.74 ± 4.40 Bq/kg of 137Cs (the highest concentration among all fertilizers), 22.37 ± 5.39 Bq/kg of 134Cs, and 433.67 ± 64.24 Bq/kg of 40K were detected whereas 131I was not detected. In the sulfur fertilizer, 347.31 ± 55.73 Bq/kg of 40K, 19.42 ± 4.53 Bq/kg of 134Cs, 2.21 ± 3.49 of 137Cs, and 0.04 ± 0.22 Bq/Kg of 131I were detected. In the phosphoric acid fertilizer, 70,007.34 ± 844.18 Bq/kg of 40K (the highest concentration among all fertilizers) and 46.07 ± 70.40 Bq/kg of 134Cs were detected whereas neither 137Cs nor 131I was detected. In the potassium chloride fertilizer, 12,827.92 ± 1542.19 Bq/kg of 40K was and 94.76 ± 128.79 Bq/kg of 134Cs were detected whereas neither 137Cs nor 131I was detected. The present study examined inorganic fertilizers produced by a single manufacturer. There might be different results according to the country and area from which fertilizers are imported. Further studies about inorganic fertilizers in more detail are needed to create measures to reduce 40K. Conclusion: Measures are needed to reduce radiation exposure to 40K contained in fertilizers including phosphoric acid and potassium chloride fertilizers.

Evaluation of luminance performance of scintillating film for monitoring the position of a radioactive source in an NDT apparatus (비파괴검사 장치 내 방사선원 위치감시용 섬광필름의 발광성능 평가)

  • Lee, Kyung-Jin;Yun, Jeong-Ick;Park, Byung-Gi;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • In domestic nondestructive testing(NDT) field, there have recently been radiation exposure accidents due to a disregard for confirmation of the position of radioisotope during the test. In order to prevent these kinds of accidents, a scintillating film has been developed. The scintillating film that can convert gamma-ray to visible light has a function of the position detection of radioisotope in a opaque guide tube of an NDT apparatus. The aim of this study is to enhance the visibility performance of the scintillating film and find out the best configuration of the scintillating film. In order to find appropriate materials for the scintillating film, various inorganic scintillating materials were evaluated in this work. An absolute luminance of the scintillating films was measured by luminance meter for evaluation of visibility performance. Ir-192 gamma projector was used for NDT apparatus. The experiment shows that the scintillating film with reflective layer was the more effective performance for visibility. The higher mixing ratio of scintillating material to binding material, the higher luminance was measured. $Gd_2O_2S(Tb)$ inorganic powder as the scintillating materials had the best performance for visibility of the scintillating film. The developed scintillating film helps to ensure safer environment to the operators.

  • PDF

Simultaneous Separation and Determination of $^{l4}C\;and\;^3H$ in Spent Resins from PWR Nuclear Power Plants (가압경수로형 원전에서 발생된 폐수지의 $^{14}C$$^3H$ 동시 분리 및 측정)

  • Park, Soon-Dal;Kim, Jung-Suck;Kim, Jong-Goo;Han, Sun-Ho;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.179-188
    • /
    • 2007
  • In this work $^{14}C\;and\;^3H$ distribution characteristics of spent resins from nuclear power plants(NPPs), pressurized water reactors(PWRs), was investigated. It was found that the recovery percent of $^{14}C$ by the wet oxidation-acid stripping was $81%{\sim}100%$ for the added activity range of $^{14}C,\;0.72\;Bq{\sim}460\;Bq$, and it was not affected by the kinds of stripping acids, 3N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$. And the recovery percent of $^3H$ by distillation using the same apparatus was $81%{\sim}101%$ for the added activity range of $^3H,\;0.60\;Bq{\sim}435\;Bq$. Among the tested stripping acids, 3\;N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$, only the trapped $^3H$ solution by distillation in $3\;N-H_2SO_4$ was compatible with the 3H scintillator, Ultimagold XR. Neither of the $^{14}C\;and\;^3H$ trapping solutions from the spent ion exchange resin samples by the wet oxidation-3 $N-H_2SO_4$ stripping contained gamma nuclides. However, some gamma nuclides, $^{60}Co,\;^{134}Cs,\;^{137}Cs\;and\;^{54}Mn$, were found in the trapped $^3H$ solutions of the spent resins by the wet oxidation-3 N-HCl stripping. It was the same for the $^3H$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). Meanwhile only two nuclides, $^{134}Cs,\;and\;^{134}Cs$, were found in the $^{14}C$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). It was found that most of the $^{14}C$ in the spent resins existed as inorganic carbon form, more than about 70% of the total $^{14}C$ content. Among the analyzed 30 spent ion exchange resin samples, the average concentration of $^{14}C$ and $^3C$ for the high radioactive samples, 8 samples, was $19000\;Bq/g{\pm}41000\;Bq/g,\;670\;Bq/g{\pm}460\;Bq/g$ and that for the low radioactive samples, 22 samples, was $4.2\;Bq/g{\pm}4.3\;Bq/g,\;6.0\;Bq/g{\pm}5.3\;Bq/g$, respectively. And the average $^{14}C/^3H$ ratio for the high radioactive samples, was higher, 28, than that of low radioactive samples, 0.70. Some linear relationship trend was found between the activity concentrations of $^{14}C\;and\;^3H$.

  • PDF