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Background: The aim of the present study was to determine radioactive concentrations in fer-
tilizers known to contain essential nutrients. Results of this study could be used as basic data to 
monitor the impact of chemical fertilizers on the environment and public health. Nitrogen fer-
tilizers, calcium fertilizers, sulfur fertilizers, phosphate acid fertilizers, and potassium chloride 
fertilizers were used in this study. 

Materials and Methods: Five chemical fertilizers were pulverized, placed in polyethylene con-
tainers, and weighed. The time to measure each specimen was set to be 3,600 seconds for a 
scintillator-based gamma-ray spectroscopy system. Concentration of gamma radionuclide was 
analyzed based on obtained spectra. At the end of the measurement, the spectrum file was stored 
and used to calculate radioactive concentrations using a gamma-ray spectrometer software. 

Results and Discussion: In the nitrogen fertilizer, 3.49 ± 5.71 Bq/kg of  137Cs, 34.43 ± 7.61 Bq/kg 
of 134Cs, and 569.16 ± 91.15 of 40K were detected whereas 131I was not detected. In the calcium 
fertilizer, 5.74 ± 4.40 Bq/kg of 137Cs (the highest concentration among all fertilizers), 22.37 ±  
5.39 Bq/kg of 134Cs, and 433.67 ± 64.24 Bq/kg of 40K were detected whereas 131I was not detect-
ed. In the sulfur fertilizer, 347.31 ± 55.73 Bq/kg of 40K, 19.42 ± 4.53 Bq/kg of 134Cs, 2.21 ±  
3.49 of 137Cs, and 0.04 ± 0.22 Bq/Kg of 131I were detected. In the phosphoric acid fertilizer, 
70,007.34 ± 844.18 Bq/kg of 40K (the highest concentration among all fertilizers) and 46.07 ±  
70.40 Bq/kg of 134Cs were detected whereas neither 137Cs nor 131I was detected. In the potassium 
chloride fertilizer, 12,827.92 ± 1542.19 Bq/kg of 40K was and 94.76 ± 128.79 Bq/kg of 134Cs were 
detected whereas neither 137Cs nor 131I was detected. The present study examined inorganic fer-
tilizers produced by a single manufacturer. There might be different results according to the 
country and area from which fertilizers are imported. Further studies about inorganic fertilizers 
in more detail are needed to create measures to reduce 40K.

Conclusion: Measures are needed to reduce radiation exposure to 40K contained in fertilizers 
including phosphoric acid and potassium chloride fertilizers.
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Introduction

Ionizing radiation was discovered by German physicist Wilhelm Conrad Rontgen in 

1895. Since then, radiation has been used in various industries such as manufacturing, 

agriculture, health, and high technologies [1]. Accordingly, more and more industry 

sectors are using radiation after understanding its characteristics and energy proper-

ties. Radiation technologies are being more widely used in the area of research and de-

velopment for daily  necessities, including the health industry, advanced parts manu-

facturing, biotechnology, and new variety development [2]. With the use of radiation, 
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the quality of life has been improved along with develop-

ment of industries and economies [3]. On average, our radia-

tion exposure due to all natural sources amounts to about 2.4 

mSv a year [4]. It is considered that natural radiation has a 

minimal effect on the human body. However, the Interna-

tional Commission on Radiological Protection has warned 

that risks of radiation exposure are likely to increase propor-

tionately with higher exposure to radiation even in small 

doses [5]. It has also been reported that plants growing in a 

soil rich in natural radionuclides coming from uranium or 

thorium can play a part in internal exposure to radioactive 

elements that we take into our bodies [6]. Phosphate rock, a 

pre-concentrated phosphate ore, is the primary raw material 

for the production of mineral phosphate fertilizer. It contains 

0.02% of uranium. In its by-product, phospho-gypsum, ra-

dioactive elements including radium exist. Caesium-137 is 

one of the radionuclides from various human activities, such 

as the spread of nuclear materials, for some reasons. It can 

cause food contamination and internal exposure to radiation 

[7]. After the Fukushima Daiichi accident in 2011, massive 

efforts have been put together to regulate and decrease 137Cs 

in food items in Japan [8–10]. There are pertinent risks of car-

cinogenesis related to internal radiation doses due to food 

contaminated by radioactive materials including 134Cs, 137Cs, 

and 131I according to Korea National Health and Nutrition 

Examination Survey. Nuclear-fuel reprocessing plants, nu-

clear wastes, and geological repositories are main sources of 

radioactive iodine in the environment [11, 12]. Convention-

ally, radiation exposures to uranium, radium, thorium, and 

potassium are well accounted for due to their roles in radio-

activity from the environment. However, after recent acci-

dents such as the Fukushima Daiichi accident in 2011, it is 

now of dire importance to measure radiation levels in South-

east Asia generally and Korea specifically due to its very close 

proximity to Fukushima, Japan [13, 14]. Iodine-131 is a very 

critical radioisotope which is closely associated with nuclear 

fission reactions. It causes environmental hazards in case of 

nuclear bomb attacks/mishaps and nuclear power plant ac-

cidents [15]. In case of a disaster or incident involving the 

spread of nuclear waste or a nuclear attack, the resultant ra-

dioactivity can spread up to 300 miles. The most extravagant 

health hazard from exposure to 131I is an enhanced risk of 

cancer induced due to radiation. It can also result in defor-

mities, non-cancerous growths, and thyroiditis [16]. Acci-

dents such as nuclear-reactor incidents at Chernobyl in 1986, 

the incident of Three Mile Island in 1979, and the most re-

cent Fukushima nuclear reactor accident in 2011 provide 

clear evidence that it is urgent to understand health hazards 

posed by the presence of iodine in the atmosphere [17]. After 

the Fukushima incident, Korean authorities are taking 

threats of food-based radiation very seriously. The Ministry 

of Food and Drug Safety in Korea has conducted surveys to 

measure radioactivity levels of 134Cs, 137Cs, and 131I through 

the Korea National Health and Nutrition Examination Sur-

vey [12]. Geographically, Korea is the closest country to Ja-

pan. Therefore, there is a dire need to confirm the absence or 

presence of 131I in the environment and soil. Although the 

quantity of radiation by each radioactive element individual-

ly can be below the standard hazardous level or the maxi-

mum tolerance of 370 Bq/kg for any food, fertilizers with 

multiple radioactive elements used for farming might deliver 

radiation to agricultural products and consequently con-

taminate water reserves such as streams and groundwater 

after mixing with rain or irrigation water [6, 18–22]. Although 

there are a number of studies available about radioactivity 

due to 238U, 232Th, and 40K present in chemical fertilizers from 

countries such as Serbia, Bangladesh, India, and Iraq [23–

26], studies that measure the radioactivity of agricultural fer-

tilizers in Korea and the rest of the world are lacking. Studies 

generally involve 137Cs and 130I specifically. A variety of re-

ports have analyzed radioactivity levels in water, air, and soil 

[27–29]. Hence, this study will serve as a foundation to better 

monitor the impact of radioactive levels in chemical fertiliz-

ers on public health and environment and to ensure that ra-

diation levels in chemical fertilizers that contain essential 

nutrients for plant growth and development are safe for hu-

man health and the environment. 

Materials and Methods

1. Experimental Materials
A total of five fertilizers, nitrogen fertilizers, calcium fertil-

izers, sulfur fertilizers, phosphate acid fertilizers, and potas-

sium chloride fertilizers, were used as experimental fertilizers. 

They are the most widely used fertilizers in Korea. Distilled 

water was used as a control (Fig. 1). Nitrogen fertilizers con-

tained 46 % of nitrogen. Calcium fertilizers had 60% of calci-

um. Sulfur fertilizers had 24% of sulfur. Phosphate acid fertil-

izers had 50% of soluble phosphate acid, 32% of soluble chlo-

ride, 0.05% of soluble copper, and 0.05% of soluble zinc. Po-

tassium chloride fertilizers had 60% of potassium. Fertilizers 

are named with the highest content of the main ingredient.
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2. Methods
1) Sample preparation

Five specimens (nitrogen fertilizer, calcium fertilizer, sulfur 

fertilizer, phosphate acid fertilizer, and potassium chloride 

fertilizer) and distilled water as control were used (Table 1). 

Each of these five specimens was pulverized and placed in a 

500 mL of Marinelli vessel (Fig. 2). The density of the distilled 

water ranged from 0.998 g/cm3 at 20 °C to 0.996 g/cm3 at 30 °C. 

Compositions of distilled water are shown in Table 2.

Each container was weighed on a scale. This time, the con-

tainer weight was not considered. The net weight was marked 

on each container and numbered. The distilled water and 

each specimen were placed on a thallium-activated sodium 

iodide, NaI(Tl), scintillator-based gamma-ray spectroscopy 

Table 1. Specimen Information

Classification Fertilizer type Weight (g) Volume (mL)

a Water 500 500
b Nitrogen 548 500
c Calcium 414 500
d Sulfur 893 500
e Phosphate acid 845 500
f Potassium chloride 873 500

Table 2. Composition of Distilled Water

Category General constants (mg/L)

Fluoride ion 0.34
Chlorine ion 10.7
Nitric nitrogen 1.30
Sulfuric acid ion 11.1
Aluminum 0.011
Copper 0.035
Iron 0.219

Table 3. Characteristics of the NaI Detector

Variable Value

Detector unit Nal(Tl) Ø 40 mm×40 mm
Number of channels 1,024
Energy range 0–3 MeV
Background <40 counts per minute (cpm)
Measurable activity concentration 
range of 137Cs

5–1,000,000 Bq/kg

Measurable activity concentration 
range of 134Cs

5–1,000,000 Bq/kg

Measurable activity concentration 
range of 40K

50–20,000 Bq/kg

Intrinsic measurement error at P=0.95 ±20%
Dimensions 255 mm×360 mm×300 mm

Fig. 1. Distilled water (A), nitrogen (B), calcium (C), sulfur (D), phos-
phate acid (E), and potassium chloride (F) samples used in this 
study. 

A

C

E

B

D

F

Fig. 2. Chemical fertilizers in scintillator. An empty container as a 
background (A), nitrogen (B), calcium (C), sulfur (D), phosphate acid 
(E), and potassium chloride (F) fertilizers are shown. 

A B

C D

E F
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system (gamma-ray spectrometer RUG 91-2; LINEV Systems, 

Minsk, Belarus) and measured. External radiation was 

blocked with a shield consisting of 48% lead, 45% tungsten, 

5% iron, and 2% nickel with a thickness of 10 cm. Character-

istics of the NaI(Tl) detector are provided in Table 3. The 

NaI(Tl) detector can respond to a gamma ray by producing a 

small flash of light or a scintillation. The scintillation occurs 

when scintillator electrons excited by energy of photon re-

turn to their ground state. The detector crystal is mounted on 

a photomultiplier tube which converts scintillation into an 

electrical pulse. This is taken from the anode of the photo-

multiplier. It is a negative pulse. The NaI(Tl) crystal is pro-

tected from the moisture in the air by encasing it in alumi-

num, which also serves as a convenient mounting for the en-

tire crystal/photomultiplier unit. 

2) Spectrometric analysis

RUG 91-2 gamma-ray spectrometer (radiometer) was used 

to analyze the amplitude of photon distribution of pulses 

generated from the scintillation detector upon detection of 

gamma-ray of the sample. Amplitude distribution of pulses 

was then analyzed and radionuclide activity was calculated. 

In order to enhance the registration of photon impulses, the 

sample was placed into a 0.5-L Marinelli vessel installed in a 

lead shield which could protect the sample from the influ-

ence of an external background radiation. Calibration and 

check took only a few minutes. Photo peaks of gamma-ray at 

1461 keV, 622 keV, 796 keV, and 365 keV were used for mea-

suring 40K, 137Cs, 134Cs, and 131I, respectively.

Distilled water as control and each fertilizer specimen were 

counted for 3,600 seconds. Gamma radionuclide concentra-

tion was then analyzed to obtain a spectrum file. At the end 

of each measurement, the spectrum file which had been stored 

was analyzed using a gamma-ray spectrometer software. 

Based on the analysis results, radiation level of each speci-

men was then determined. 

Results and Disucssion

The nitrogen fertilizer had 3.49± 5.71 Bq/kg of 137Cs, which 

was the second highest concentration, 34.43 ± 7.61 Bq/kg  

of 134Cs, and 569.16± 91.15 Bq/kg of 40K, whereas 131I was not 

detected. The calcium fertilizer had the highest concentration 

of 137Cs at 5.74± 4.40 Bq/kg. It also had 22.37± 5.39 Bq/kg of 
134Cs and 433.67± 64.24 Bq/kg of 40K. However, 131I was not 

detected. The sulfur fertilizer had 347.31± 55.73 Bq/kg of 40K, 

19.42 ± 4.53 Bq/kg of 134Cs, 2.21 ± 3.49 Bq/kg of 137Cs, and 

0.04± 0.22 Bq/kg for 131I. The phosphoric acid fertilizer had 

the highest concentration of 40K at 70,007.34 ± 844.18 Bq/kg 

and 46.07± 70.40 Bq/kg of 134Cs, whereas neither 137Cs nor 131I 

was detected. The potassium chloride fertilizer had 12,827.92±  

1,542.19 Bq/kg of 40K and 94.76± 128.79 Bq/kg of 134Cs. Nei-

ther 137Cs nor 131I was detected (Table 4). Fig. 3 shows radio-

active concentrations and spectra of the five fertilizers and 

distilled water measured for 3,600 seconds. 

Currently, radioactive substances manufactured or pro-

cessed using radiation technologies are being accumulated 

worldwide. They are mostly radioactive wastes produced 

from nuclear power plants, fallouts from nuclear tests, and 

radioisotopes used in the health industry [30]. Due to some 

nuclear disasters such as the Chernobyl nuclear disaster in 

1986 and the Russia nuclear disaster in 1993, people are con-

cerned about impacts of radiation on human health [31]. As 

many people are exposed to radionuclides from natural ra-

diation sources in the soil due to such accidents, it is impor-

tant to minimize radiation impacts. Zmazek et al. [32] have 

reported that areas rich in granite are more likely to have 

uranium and radon than non-granite areas. Granites include 

2–12 parts per million (ppm) of uranium and 8–33 ppm tho-

rium [33]. Every year, the Korea Institute of Nuclear Safety 

measures radiation in subsoil and topsoil for 14 areas and 

publishes analysis results due to concern about radiation 

impacts. Thus, the objective of this study was to measure ra-

Table 4. Activity Concentration of 134Cs, 137Cs, 40K, and 131I Radionuclides in Samples

Sample Fertilizer
Activity concentration (Bq/kg)

134Cs 137Cs 40K 131I

b Nitrogen 34.43±7.61 3.49±5.71 569.16±91.15 <LLD
c Calcium 22.37±5.39 5.74±4.40 433.67±64.24 <LLD
d Sulfur 19.42±4.53 2.21±3.49 347.31±55.73 0.04±0.22
e Phosphate acid 46.07±70.40 <LLD 70,007.34±844.18 <LLD
f Potassium chloride 94.76±128.79 <LLD 12,827.92±1,542.19 <LLD

Values are presented as mean±standard deviation.
LLD, lower limit of detection. 
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Fig. 3. Radioactive concentration spectrum of each fertilizer measured for 3,600 seconds. Spectra of background (A), nitrogen (B), calcium 
(C), sulfur (D), phosphate acid (E), and potassium chloride (F) are shown. (Continued to the next page)

A

B

C

diation levels of inorganic fertilizers widely used in agricul-

ture. As a result, 40K showed the highest levels in fertilizers 

containing phosphate acid and potassium chloride. A phos-

phate acid fertilizer’s base material is phosphate rock, a nat-

ural radiation source which contains 235U, 238U, and 232Th. 

Phosphate rock exporters to Korea are Morocco, China, Isra-

el, and Togo. It was found that rocks they exported exceeded 

the radiation standard (1,000 Bq/kg) [34] in terms of 235U and 
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238U. As potassium chloride is added in order to improve hy-

groscopic capacity in the process of manufacturing a phos-

phate acid fertilizer, the level of 40K increases accordingly 

[35]. A potassium chloride fertilizer is manufactured with 

leucite, alunite, and sericite known to be rich in potassium. It 

has been reported that ores rich in potassium imported by 

Korea from countries such as Canada, Belarus, and Russia 

have high 40K levels, exceeding 1,000 Bq/kg. Almost all foods 

have natural radioactivity due to radioactive isotopes. For ex-

ample, 40K is present at 40–50 Bq/kg in cows' milk, 400–500 

Bq/kg in milk powder, 600–800 Bq/kg in concentrated fruit 

juice, and over 1000 Bq/kg in instant coffee [22]. Natural ra-

dioactivity is primarily due to primordial radionuclides 40K, 
232Th, 238U, 235U, and so on present in different quantities de-

pending on soils of different regions in the world [36]. Ac-

cording to the International Atomic Energy Agency, a per-

D

Fig. 3. Continued.

E

F
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missible limit for food is 370 Bq/kg of 40K [35]. However, Ra-

jacic et al. [25] have demonstrated that the concentration of 
40K in fertilizer is 4,860 Bq/kg [25]. Radiation due to 40K, a ra-

dionuclide, is rapidly absorbed into the body, causing inter-

nal exposure to radioactive elements that we take into our 

bodies through food and water [37]. In the environment, 40K 

is redistributed through agriculture by application of fertiliz-

ers. Thus, its concentration should be measured to distin-

guish safe utilization levels of fertilizers rich in 40K [19, 25, 38]. 

From production to utilization in agriculture, fertilizers 

might cause exposure to gamma radiation (external expo-

sure) [39–41]. Many biomedical hazards are associated with 

exposure to radiation for a few weeks or months to years, 

which might cause radiation-induced liver disease [42–45]. 

Exposure to a significant level of radiation released from fer-

tilizers can potentially cause cancers. Thus, a deeper under-

standing of fertilizers-based radiation is required [46, 47]. In 

particular, 40K is a constant and uniform source of exposure 

to radiation for humans [48]. The present study examined 

inorganic fertilizers produced by a single manufacturer. Re-

sults might be different depending on the country and areas 

from which fertilizers are imported. Further studies about 

inorganic fertilizers in more details are needed to create 

measures to reduce 40K. 

Conclusion

As a result of this study, 40K had the highest levels in five 

fertilizers. Thus, there is a need to take measures to reduce 

radiation exposure from 40K contained in fertilizers including 

phosphoric acid and potassium chloride. This study can 

help us understand radioactive concentrations in five inor-

ganic fertilizers used in Korea. In the future, it is necessary to 

set up measures to cut radiation impacts from radionuclides.
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