• Title/Summary/Keyword: Inorganic salts

Search Result 208, Processing Time 0.024 seconds

Inorganic Salts which effect on IDOD Value (IDOD에 영향(影響)을 주는 환원성호기물에 관(關)한 연구(硏究))

  • Kim, Hang-Joon
    • Journal of Preventive Medicine and Public Health
    • /
    • v.11 no.1
    • /
    • pp.83-85
    • /
    • 1978
  • IDOD (Immediate Dissolved Oxygen Demand) is a value of the oxygen demand after 15 minute of inoculation by inorganic reducing salts. Industrial development and urban enlargement are bringing water pollution deeply, and industrial waste waters are the source of the inorganic reducing salts. Author investigated the IDOD value change according to the inorganic salts and gained the following results: 1. IDOD value influenced by $Na_{2}SO_3$ is 81.4 ppm. 2. Generally sulfur compounds are highly effecting on IDOD. 3. The nitrite salt had little influence on IDOD.

  • PDF

Effects of inorganic salts on biomass production, cell wall components, and bioethanol production in Nicotiana tabacum

  • Sim, Seon Jeong;Yong, Seong Hyeon;Kim, Hak Gon;Choi, Myung Suk;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • The development of bioenergy through biomass has gained importance due to the increasing rates of fossil fuel depletion. Biomass is important to increase the productivity of bioethanol, and production of biomass with high biomass productivity, low lignin content, and high cellulose content is also important in this regard. Inorganic salts are important in the cultivation of biomass crops for the production of biomass with desirable characteristics. In this study, the roles of various inorganic salts in biomass and bioethanol production were investigated using an in vitro tobacco culture system. The inorganic salts evaluated in this study showed dramatic effects on tobacco plant growth. For example, H2PO4 substantially improved plant growth and the root/shoot (R/S) ratio. The chemical compositions of tobacco plants grown in media after removal of various inorganic salts also showed significant differences; for example, lignin content was high after Mg2+ removal treatment and low after K+ treatment and H2PO4 removal treatment. On the other hand, NO3- and H2PO4 treatments yielded the highest cellulose content, while enzymatic hydrolysis yielded the highest glucose concentration ratio 24 h after NH4+ removal treatment. The ethanol productivity after H2PO4 removal treatment was 3.95% (w/v) 24 h after fermentation and 3.75% (w/v) after 36 h. These results can be used as the basis for producing high-quality biomass for future bioethanol production.

Effects of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrated from by-Product Gypsum of Phosphoric Acid Process at Hydrothermal Condition (가압수열 수용액중에서 인산석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.343-348
    • /
    • 1987
  • The effects of salts such as aluminum sulfate as inorganic salt(2-4%), and sodium salts of citrate, tartrate, succinate, potassium tartrate and gelatin as organic salts(0.1%) on the formation of ${\alpha}$-calcium sulfate hemihydrate from by-product gypsum of phosphoric acid process under hydrothermal condition at 123$^{\circ}C$ and 133$^{\circ}C$ were investigated. Aluminum sulfate solution exhibited the catalystic effected on the crystallization of ${\alpha}$-calcium sulfate hemihydrate of which was assumed in the prismatic form, and organic salts solution exhibited little effect on the catalystic action to the crystallization, than inorganic salts. In the acidic solution with sulfuric acid(pH=2), needle like crystal of calcium sulfate hemihydrate was obtained. Hydrothermal process with aluminum sulfate solution also showed certain amounts of impurity removal such as phosphorus penataoxide from calcium sulfate hemihydrate.

  • PDF

Influence of Inorganic Salts on Aqueous Solubilities of Polycyclic Aromatic Hydrocarbons

  • Yim, Soobin
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • Setschenow constants of six alkali and alkaline earth metal-based electrolytes (i.e., NaCl, KCl, CaCl$_2$, K$_2$SO$_4$, Na$_2$SO$_4$, NaClO$_4$) for three polycyclic aromatic hydrocarbons (PAHs) (i.e., naphthalene, pyrene, and perylene) were investigated to evaluate the influence of a variety of inorganic salts on the aqueous solubility of PAHs. Inorganic salts showed a wide range of K$\_$s/ values (L/mol), ranging from 0.1108 (NaClO$_4$) to 0.6680 (Na$_2$SO$_4$) for naphthalene, 0.1071 (NaClO$_4$) to 0.7355 (Na$_2$SO$_4$) for pyrene, and 0.1526 (NaClO$_4$) to 0.8136 (Na$_2$SO$_4$) for perylene. In general, the salting out effect of metal cations decreased in the order of Ca$\^$2+/>Na$\^$+/>K$\^$+/. The effect of SO$_4$$\^$2-/>Cl$\^$-/>ClO4$\^$-/ was observed for anions of inorganic salts. The K$\_$s/ values decreased in the order of perylene>pyrene>naphthalene for K$_2$SO$_4$. However, the order of decreasing salting out effect for NaCl, KCl, CaCl$_2$, and NaClO$_4$ was perylene>naphthalene>pyrene. Hydration free energy of the 1:1 and 2:1 alkali and alkaline earth metal-based inorganic salts solution was observed to have a meaningful correlation with Setschenow constants. Thermodynamic interactions between PAH molecules and salt solution can be of importance in determining the magnitude of salting out effect for PAHs at a given salt solution.

Effects of Seed-Soaked $GA_3$ and Inorganic Salts on Mesocotyl and Coleoptile Elongation in Rice

  • Nam, Taeg-Su;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.50-54
    • /
    • 2000
  • The elongation of mesocotyl and coleoptile plays important roles in the seedling emergence and stand establishment of dry direct-seeded rice. Experiments were carried out to elucidate the effects of seed-presoaking treatments of GA$_3$ and some inorganic salts on the mesocotyl, and coleoptile elongation of rice. Seed-soaked GA$_3$ promoted the elongation of mesocotyl, but little effect on the coleoptile elongation. The stimulation effects of GA$_3$ were found to be enhanced by addition of CaCl$_2$ However, the sole treatment of CaCl$_2$ showed no stimulating effect on the mesocotyl and coleoptile elongation. Mesocotyl elongation was most prominent in the combined treatments of 50ppm GA$_3$ with 100 mM CaCl$_2$. The synergistic effects of GA$_3$ and CaCl$_2$ on mesocotyl elongation varied with varietal groups. The stimulating effects of GA$_3$ were enhanced significantly by the addition of CaCl$_2$ in japonica varieties, Dongjinbyeo, Ilpumbyeo and Milyang 95, and tall indica variety, Labelle, but not in semidwarf Tongil type varieties, Tongilbyeo, Milyang 23, and Nampungbyeo, and semi-dwarf indica, Short Labelle. The promoting effects of GA$_3$ on the mesocotyl elongation were decreased in proportion to the lowered osmotic potential by PEG 6000 on the contrary to CaCl$_2$ This implies that the synergistic effects of CaCl$_2$ with GA$_3$ on mesocotyl elongation was not caused by osmotic potential lowered by CaCl$_2$ addition but by the salt itself. Salts such as Ca(NO$_3$)$_2$, MgCl$_2$ BaCl$_2$, NaCl, KCl and KNO$_3$ showed the synergistic effects with GA$_3$ on mesocotyl elongation as well. The degree of synergistic effects showed no differences among salts tested, implying that there is no specificity of ions constituting the salts.

  • PDF

A Study on the Acidification of Soils (토양의 산성화에 관한 연구)

  • Park,Byeong-Yun;Eo,Yun-U;Yang,So-Yeong;Jang,Sang-Mun;Kim,Jeong-Ho;Lee,Dong-Hun
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.305-310
    • /
    • 2001
  • pH($H_2O$), pH(KCI), CEC(cation exchange capacity), O.M.(organic matter) and exchangeable cations(K, Na, Ca, Mg) of paddy soil, upland soil and forest soil in Kumi city were investigated for the purpose of knowing soil acidification and the correlation between soil acidification and leaching of inorganic salts. The mean pH($H_2O$) values of paddy soil were 5.23(surface soil) and 5.69(subsoil) and 4.74(subsoil). The were 6.37(surface soil) and 6.11(subsoil), and those of forest soil were 4.67(surface soil) and 4.74(subsoil). The mean pH(KCl) values of paddy soil were 4.59(surface soil) and 4.98(subsoil) were 5.48(surface soil) and 5.04(subsoil), and those of forest soil were 3.82(surface soil) and 3.89(subsoil). The acidification of forest soil was more rapid than that of paddy soil and upland soil/ The total mean amounts of exchangeable cations(K, Na, Ca, Mg) in paddy soils were 6.14me/100g(surface soil) and 5.64me/100g(subsoil), and those in upland soils were 6.86me/100g(surface soil) and 6.65me/100g(subsoil), and those in forest soils were 4.06me/100g(surface soil) and 3.34me/100g(subsoil). The contents of inorganic salts in forest soil were much less than those of paddy soil and upland soil. The correlation coefficients(r) between pH($H_2O$) values and the total amounts of exchangeable cations in soils were $0.6635^{**}$(surface soil) and $0.6946^{**}$(subsoil), and those between pH(KCl) values and exchangeable cations in soils were 0.6629(surface soil) and $0.5675^{**}$(subsoil). The correlation between soil acidification and leaching of inorganic salts in soil was positively significant at 1% level.

  • PDF

Peculiar Temperature Dependence on the Binding of Acid Dye by Crosslinked Poly(4-vinylpyridine) -The Effect of Inorganic Electrolytes- (가교폴리(4-비닐피리딘)과 산성염료와의 결합에 대한 특이한 온도의존성 - 무기전해질의 효과 -)

  • Lee, Suk Kee
    • Textile Coloration and Finishing
    • /
    • v.9 no.2
    • /
    • pp.25-31
    • /
    • 1997
  • The extent of binding of acid dye (methyl orange) by crosslinked poly-(4-vinylpyridine) (CHP4VP) has been investigated in aqueous solution containing of inorganic electrolytes such as NaCl and NaSCN. It was found that the first binding constants ($K_{1}$) in the presence of the salts were smaller than those in the absence of the salts and the values of $K_{1}$ showed a bell-shaped curve against temperature. These results are discussed in terms of both the competition binding between the dye and salt anions for the crosslinked polymer and the change of hole size of CHP4VP with the addition of the salts.

  • PDF

Fruit-body Formation of Flammulina velutipes on the Synthetic Medium -II. Effect of Vitamins and Inorganic Salts- (합성배지(合成培地)를 이용(利用)한 팽나무 버섯의 자실체형성(字實體形成)에 관한 연구(硏究) -제(第) 2 보(報) : Vitamin과 무기염류(無機鹽類)의 영향(影響)-)

  • Hong, Jai-Sik;Yoon, Sook
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.255-260
    • /
    • 1981
  • Effects of vitamins and inorganic salts on the mycelial growth and fruit-body formation of Flammulina velutipes were investigated. Thiamine was most effective on the mycelial growth and fruit-body formation, and its optimum concentration was$50{\mu}g%$. The mycelial growth and fruit-body formation were enhanced by the addition of $KH_{2}PO_{4}\:and\:MgSO_{4}$ at the concentration of 0.2 and 0.02% respectively, but other inorganic salts were ineffective for mycelial growth and fruit-body formation.

  • PDF

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

Crystallographical Characteristics of Solar Salts Produced from Jeonnam Area by X-Ray Diffraction Technique (X선 회절법에 의한 전남지역 천일염의 결정학적 특성)

  • Jeong, Byung-Jo;Kim, Yong;Kim, Chang-Dae;Hyun, Seung-Cheol;Ham, Gyung-Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.9
    • /
    • pp.1284-1288
    • /
    • 2009
  • Identification of various inorganic compound crystals contained in solar salts, which are produced from 12 areas of Jeonnam, was firstly made by the X-ray diffraction (XRD) technique. The analysis of the XRD spectra was carried out on the basis of Joint Committee on Powder Diffraction Standards (JCPDS) data and the results of Energy Dispersive X-ray Spectrometer (EDX) measurements. In particular, the analysis of the XRD spectra supported that each solar salt contains $Na_2S$ (Shinan Jeungdo and Sinui), $KMgCl_3$ (Shinan Bigeum), $Ca(ClO_3)_2$ (Shinan Docho), $CaAl_4O_7$ (Haenam Songji), $CaSiO_3$ and $CaCl_2$ (Goheung) as inorganic compound crystals, which have not been reported for the solar salts. Also, the XRD results indicated that the solar salts maintain a cubic NaCl crystal structure without any change of lattice parameters etc. However, it was shown in the Field Emission Scanning Electron Microscope (FE-SEM) images that an external form of the solar salts has a lamination layer shape of a cubic structure, which is different from a simple cubic form for the purified salts and the reagent NaCl.