• Title/Summary/Keyword: Inorganic precursor

Search Result 110, Processing Time 0.027 seconds

Effect of Precursor Ratio on the Properties of Inorganic-Organic Hybrid TiO2-SiO2 Coating (유무기 TiO2-SiO2 혼성코팅에 미치는 전구체 배합비율의 영향)

  • Kim, Dong Kyu;Maeng, Wan Young
    • Korean Journal of Materials Research
    • /
    • v.26 no.5
    • /
    • pp.271-280
    • /
    • 2016
  • When a single inorganic precursor is used for the synthesis of a sol-gel coating, there is a problem of cracking on the surface of coating layer. In order to solve this problem of surface cracking, we synthesized inorganic-organic coatings that have hybrid properties of inorganic and organic materials. Sols of various ratios (1:0.07, 0.2, 0.41, 0.82, 1.64, 3.26, 6.54, 13.2) of an inorganic precursor of Tetrabutylorthotitanate ($Ti(OBu)_4$, TBOT) and an organic precursor of ${\gamma}$-Methacryloxy propyltrimethoxysilane (MAPTS) were prepared and coated on stainless steels (SUS316L) by dip coating method. The binding structure and the physical properties of the synthesized coatings were analyzed by FT-IR, FE-SEM, FIB (Focused Ion Beam), and a nano-indenter. Dynamic polarization testing and EIS (electrical impedance spectroscopy) were carried out to evaluate the micro-defects and the corrosion properties of the coatings. The prepared coatings show hybrid properties of inorganic oxides and organic materials. Crack free coatings were prepared when the MAPTS ratio was above a critical value. As the MAPTS ratio increased, the thickness and the corrosion resistance increased, and the hardness decreased.

Synthesis of Polycarbosilane for SiC Precursor (II) (SiC의 Precursor Polycarbosilane의 합성 (II))

  • Han, Chul;Lee, Hyung-Bock;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.518-522
    • /
    • 1988
  • Polycarbosilane was synthesized from polydimethylsilane at 42$0^{\circ}C$, pyrolysis temperature with various times And IR, NMR, UV, and GPC were detected. Average molecular weight Mn was increased proportionally with the reaction time. Average molecular weight of polycarbosilane was about 700(n=20), which has chain structure and the product yield was 72%.

  • PDF

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Synthesis of Flake Type Micro Hollow Silica Using Mg(OH)2 Inorganic Template

  • Lee, Ji-Seon;Noh, Kyeong-Jae;Moon, Seong-Cheol;Lee, Young-Chul;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.222-227
    • /
    • 2017
  • Flake-type micro hollow silica was synthesized by precipitation method using an $Mg(OH)_2$ inorganic template and sodium silicate and ammonium sulfate as the silica precursors. We investigated the effects of the silica precursor concentration on the shape, shell thickness, and surface of the hollow silica. When the concentration of the silica precursor was 0.5 M, the hollow silica had a smooth and translucent thin shell, but the shell was broken. On the other hand, the shell thickness of the hollow silica changed in the range of 12 nm to 18 nm with the increase of the precursor concentration from 0.7 M to 1.1 M. Simultaneously, unintended spherical silica satellites were created on the shell surface. The number of satellites and the size rose according to the increased concentration of silica precursor. The reason for the formation of spherical silica satellites is that the $NH_4OH$ nucleus generated in the synthesis of hollow silica acted as another silica reaction site.

Sintering and Microwave Dielectric Properties Of Ba2Ti9O20 Ceramics Prepared by Precursor Method

  • Sung, Je-Hong;Lee, Joon-Hyung;Kim, Jeong-Joo;Lee, Hee-Young;Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.365-370
    • /
    • 2003
  • The phase development process of $Ba_2$ $Ti_{9}$ $O_{20}$ ceramics is not clearly known and frequently accompanies second phases which deteriorate dielectric properties. In synthesizing $Ba_2$ $Ti_{9}$ $O_{20}$ ceramics, in order to trace the reaction sequence during conventional solid-state reaction in BaO-Ti $O_2$ system, different barium sources of BaC0$_3$ and BaTi0$_3$ precursor were used as starting materials. From the analysis of XRD patterns, different secondary phases could be identified depending on the barium source used, which might mean that the equilibrium phases in BaO-Ti $O_2$ system are very difficult to be synthesized. Because the BaTi0$_3$ precursor provides short diffusion paths of ions, the system revealed less secondary phases during solid state reaction. In synthesizing BaO-xSm$_2$0$_3$-4.5Ti0$_2$ system using different barium sources, different secondary phases were developed also. Microstructure and dielectric properties were examined and discussed in terms of secondary phase development.

Synthesis of CuO from organic-inorganic hybrid (유기-무기 복합소재로부터 CuO합성)

  • Huh Young-Duk;Kweon Seok-Soon;Kuk Won-Kwen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.193-197
    • /
    • 2005
  • CuO has been synthesized using the layered organic-inorganic hybrids, $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$ as precursor. The simple thermal decomposition of $Cu_2(OH)_3(CH_3COO){\cdot}H_2O$ is used without any external organic templates. This method provides large-scale production at a low cost of the single-crystalline CuO particles. The morphology of CuO aggregated particles is strongly dependent on structure of the precursor.

Synthesis of Hybrid Sol Based on ZrO2-SiO2 System and their Coating Properties

  • Lee, Sang-Hoon;Park, Won-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.349-352
    • /
    • 2004
  • Organic-inorganic hybrid sol based on ZrO$_2$-SiO$_2$ system was prepared by sol-gel process. Firstly, ZrO$_2$ non-aqueous precursor sol was synthesized and then organosilane compounds which include epoxy silane (GPTS; 3-g1ycidoxypropyl tri-methoxysilane) and acryl silane (ACS; (3-(tri-methoxysilyl)propylmethacrylate)) were added to ZrO$_2$precursor sol for hybridization. Finally, com-mercial silica sol was added to improve the mechanical properties. Synthesized organic-inorganic Zr-hybrid sol was coated on polycarbonate substrate for enhancing it’s mechanical properties, especially hardness. Vicker’s hardness of polycarbonate sub strate was increased from 13.6 to 17.8 MPa and its pencil hardness was increased from 2 to 7 H, respectively, after coating and drying at 10$0^{\circ}C$ for 30 min.

Preparation of reflexite collimating film (RCF) by ink-jet technique with organic-inorganic hybrid precursor

  • Hu, Yi;Liu, Jiun-Shing;Lyu, Jhong-Ming;Liu, Tung-Cheng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1459-1461
    • /
    • 2009
  • In this study, we prepared the multi-refraction film thin by ink-jet technique with sol-gel precursor. The precursors were prepared by using some transition metal alk-oxide and the tetraethylorthosilicate (TEOS) mixed separately with n-Butyl Alcohol and PVB (Poly(vinyl butyral)).The structure and morphology of the resulting films were investigated by atomic force microscope (AFM). It is shown that the shape of the pattern of the films would affect the refraction proportion.

  • PDF

Organic-Inorganic Hybrid Thin Film Fabrication as Encapsulation using TMA and Adipoyl Chloride

  • Kim, Se-Jun;Han, Gyu-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.395-395
    • /
    • 2012
  • We fabricate organic-inorganic hybrid thin film for the purpose of encapsulation by molecular layer deposition (MLD) using Trimethylaluminium (TMA) and Adipoyl Chloride (AC). Ellipsometry was employed to verify self limiting reaction of ALD. Linear relationship between number of cycle and thickness was obtained. We found that desirable organic thin film fabrication is possible by MLD surface reaction in nanoscale. Purging was carried out after dosing of each precursor to form monolayer in each sequence. We also confirmed roughness of the organic thin film by atomic force microscopy. We deposit TMA and AC at $70^{\circ}C$ and that 1.78A root mean square was obtained which indicates that uniform organic thin film was formed. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates superlattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Synthesis of Cubic Cu2O from Organic-Inorganic Hybrid (유기-무기 혼성화합물로 부터 정육면체 Cu2O 합성)

  • Heo, Yeong-Deok;Song, Ha-Cheol;Guk, Won-Geun
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.60-64
    • /
    • 2006
  • has been synthesized using the layered organic-inorganic hybrids, Cu2(OH)3(CH3COO)·H2O as a precursor. Cubic Cu2O is synthesized by reducing Cu2(OH)3(CH3COO)·H2O with glucose in water at 75oC. The effects of precursor and glucose are investigated. The structure of Cu2(OH)3(CH3COO)·H2O plays an important role in preparing the uniform size of Cu2O.