• Title/Summary/Keyword: Inorganic phosphate

Search Result 436, Processing Time 0.027 seconds

Accumulation of inorganic arsenic, and growth rate by changing of phosphate concentration in Hizikia fusiforme (인산염 농도 변화에 따른 톳(Hizikia fusiforme)의 무기비소(As (V)) 축적 및 생장률 변동)

  • Hwang, Un-Ki;Choi, Hoon;Choi, Min-Kyu;Kim, Min-Seob;Choi, Jong-Woo;Heo, Seung;Lee, Ju-Wook
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.189-195
    • /
    • 2019
  • In this study, we performed an analysis of the accumulation of inorganic arsenic and growth rate with changes in phosphate concentration in Hizikia fusiforme. When exposed to inorganic arsenic for fourteen days, we found that the collection of inorganic arsenic hardly increased at high phosphate concentrations (2 mg L-1). However, when the phosphate concentration was low (0.02 mg L-1), accumulation of inorganic arsenic increased. Additionally, H. fusiforme decreased in a growth rate of 14.5% in low phosphate concentration (0.02 mg L-1) and fell in a growth rate of 30% when exposed to inorganic arsenic (10 ㎍ L-1). H. fusiforme cannot distinguish between phosphate and inorganic arsenic. Thus, when phosphate concentration was lower, the inorganic arsenic accumulation increased, and accumulated inorganic arsenic inhibited photosynthesis and cell division, reducing the growth rate. H. fusiforme is known to have higher inorganic arsenic accumulation than other seaweeds. Therefore, various studies are needed to secure the food safety of H. fusiforme which is an essential aquaculture species in Korea.

A Study on Phosphate Metabolism of Chloroplast Isolated from Spinach (시금치에서 분이한 엽록체의 인산대사에 관한 연구)

  • 이종삼
    • Journal of Plant Biology
    • /
    • v.19 no.3
    • /
    • pp.71-84
    • /
    • 1976
  • In order to observe the phosphate metabolism in chloroplast, the contents of inorganic phosphate and various compounds in chloroplast from spinach leaf tissues were investigated during the reaction in the light and dark in the reaction mixture and the turnover of phosphate in chloroplast was compared with that of whole cell system: 1. The phosphorus of DNA in chloroplast appears to be transferred from inorganic phosphate, while in whole cell system from phosphate pool. 2. $^{32}P-phosphate$ content of acid soluble fraction in chloroplast as well as in whole cell system was more increased in the light than dark during the reaction. It was noted to be caused by the stimulation of sugar phosphate synthesis in the light. 3. It was confirmed that polyphosphate exists in chloroplast as well as whole cell. Acid insoluble polyphosphate content in whole cell system was significantly decreased during the reaction and the similar tendency was also observed in chloroplst. It is, therefore, considered that acid insoluble polyphosphate also play an most important role as a phosphate pool respectively in chloroplast and in cytoplasm. 4. Protein and lipid phosphorus in chloroplast as well as whole cell system were transferred from acid insoluble polyphosphate.

  • PDF

Strength properties of magnesium oxide matrix according to type of phosphate (인산염 종류에 따른 산화마그네슘 경화체의 강도 특성)

  • Lim, Jeong-Jun;Pyeon, Su-Jeong;Kim, Dae-Yeon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.79-80
    • /
    • 2018
  • Recently, the interest in remodeling of new and old buildings is increasing worldwide. As a result, the frequency of use of architectural adhesives has increased. Currently, adhesives used in buildings are made of organic materials in most cases, and epoxy resin adhesives are most widely used. However, epoxy resin adhesives contain formaldehyde and VOCs in the room during construction, which can cause sick house syndrome. In case of building fire, it may cause damage due to carbon monoxide generated from organic materials. It is urgent to study the problem of epoxy fill adhesive made of such organic materials. Therefore, the purpose of this study is to investigate the effect of the adhesion of epoxy resin adhesive, which is a problem of epoxy resin adhesive, which is an existing organic adhesive by using inorganic materials such as magnesia and phosphate, And the inorganic adhesive which does not emit the release amount as an inorganic material.

  • PDF

Inorganic Phosphate Has the Inhibitory Effect on Phosphotyrosyl Phosphatase Activity of Alkaline Phosphatase in Rabbit Plasma (인산에 의한 토끼 혈장 Alkaline Phosphatase의 Phosphotyrosyl Phosphatase 활성 저해)

  • Lee, Kyung Tae;Seo, Soong Hoon;Kim, Dong Hyun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.9 no.1
    • /
    • pp.62-65
    • /
    • 1999
  • Inorganic phosphate (Pi) in rabbit plasma was found to block completely phosphotyrosine phosphatase (PTPase) activity without affecting the alkaline phosphatase (ALPase) activity. Our results provided that (1) PTPase activity and inhibitor are separated after G-25 gel-filtration. (2) This inhibitor is heat stable and trypsin-resistant and it can be removed by dialysis using 3 Kd cut-off tubing. (3) The elution pattern of the inhibitor is identical to that of Pi, and by performing a seperate run with inorganic phosphate. (4) The PTPase activity was recovered following an incubation with $CaCl_2$ (10 mM).

  • PDF

Fermentation of MR-387A and B, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387: Phosphate Repression of Inhibitor Formation

  • YUNG-HEE KHO;CHUNG, MYUNG-CHUL;HYO-KON CHUN;HO-JAE LEE;CHOONG-HWAN LEE,;SU-IL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 1995
  • The effect of inorganic phosphate on the fermentative production of aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. With inorganic phosphate concentrations higher than 0.78 mM, an inverse correlation was found between the maximum inhibitor production and the initial phosphate concentration added. Growth sensitivity of this actinomycete to arsenate, a phosphate analogue, and the use of magnesium carbonate, a phosphate-trapping agent, suggested that the inhibitor formation was under phosphate repression. Exogenous ATP further increased the degree of phosphate interference in both phosphate-repressed and non repressed culture conditions. The use of a phosphate analogue and a protein synthesis inhibitor also suggested that the phosphate itself repressed inhibitor formation.

  • PDF

Synthesis and Properties of Self-hardening Calcium Phosphate Cemetns for Biological Application

  • Song, Tae-Woong;Kim, Han-Yeop
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.129-133
    • /
    • 1997
  • Fine powder of $\alpha$-tricalcium phosphate, tetracalcium phosphate and dicalcium phosphate were mixed together to prepare self-setting cements which form hydroxyapatite, one of the well-known biocompatible materials, as the end of products of hydration. Hardening behaviour of the cements was examined at the temperature range of 37~$70^{\circ}C$ and 150~$250^{\circ}C$ under the normal and hydrothermal condition respectively. The conversion of cements into hydroxyapatite was significantly improved ast elevated temperature and the paste was strengtheed by interlocking of hydroxyapatite crystals, indicating that the strength is determined by microtexture rather the amount of conversion of cements into hydroxyapatite.

  • PDF

Phosphate removal in water by mesostructure based on titanium and silica (티타늄과 실리콘 기반의 메조구조체를 이용한 수중의 인 제거)

  • Lee, Seung-Yeon;Choi, Jae-Woo;Lee, Sang-Hyup;Lee, Ki-Bong;Hong, Seok-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.725-730
    • /
    • 2011
  • In this study, it was investigated that the feasibility of utilizing inorganic mesostructures for removal of phosphate in water. The comparison of the efficiency for phosphate adsorption between inorganic mesostructures was conducted. X-ray diffraction(XRD) and Brunauer-Emmett-Teller(BET) methods were used to characterize these mesostructures. The efficiencies of silica and titanium mesostructures for the removal of phosphate from aqueous solution were investigated. Equilibrium data were analyzed using the Langmuir isotherm. The maximum adsorption capacities of mesostructure adsorbents were found to be 49.3 and 19.5 mg $g^{-1}$ for the titanium and silica mesostructures, respectively. The adsorption kinetics was described by a pseudo third-order kinetic model. The results from this study indicated that the titanium mesostructure has the potential to be utilized for the cost-effective removal of phosphate from wastewater.

Effects of heavy metals on contents of various phosphate compounds and organic compounds in chlorella cells (Chlorella의 인산화합물 및 유기물함량에 미치는 중금속의 영향)

  • 이종삼;임영복
    • Korean Journal of Microbiology
    • /
    • v.20 no.1
    • /
    • pp.27-40
    • /
    • 1982
  • The effects of heavy metals on the growth rate and phosphate metabolism of Chlorella elliposidea cells were investigated. Chlorella cells were cultured in the media treated with Hg(0.3, 0.7, 0.9 ppm), Cd(1, 5, 15ppm), and Zn(1, 5, 50ppm) for 6days. Aliquots cells were taken out at the inoculation and at intervals during the culture, and measured packed cell vlolume and optical density. The inhibitions of heavy metals on the growth rate and chlorophyll contents were traced. Also after 6 days culture, the amounts of inorganic phosphate and organic compounds of various fractions in Chlorella cells were observed. The turbid effects of heavy metals on the growth rate and chlorphyll contents of Chlorella cells were in order of Hg>Cd>Zn. Because heavy metals depressed the biosynthesis of inorganic polyphosphates and nucleic acids and turn over of inorganic phosphates, the amounts of various phosphate compounds were decreased. The inhibitory effect of photosynthesis by heavy metals resulted in lower contents of carbohydrate. Due to the turbidity of biosynthesis of amino acids by heavy metals, contents of protein were reduced in comparison with those of control. It is suggested conciusively that the minimum concentrations affected by heavy metals on the growth rate and phosphate metabolism of Chlorella cells were 0.7 ppm Hg, 15ppm Cd, 50ppm Zn.

  • PDF

Enhanced removal of phosphate on modified ion exchanger with competing ion (음이온 교환수지를 이용한 인제거 향상)

  • Nam, Ju-Hee;Lee, Sang-Hyup;Choi, Jae-Woo;Hong, Seok-Won;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.121-128
    • /
    • 2013
  • The concern for dissolved phosphate in water/wastewater has been increasing because of the risk for eutrophication. A variety of conventional and advanced technologies were applied to meet the enforced new regulation of phosphate around the world. However, there still remained a lot of challenge because most introduced/developed method, for example, biological and physic-chemical treatment is not easy to satisfy the new regulation of phosphate in water. In order to meet the new regulation, the application of ion exchanger has been tried which showed that the removal efficiency for phosphate was strongly determined by in the presence of the competing ion, especially sulfate. As results, a new class of ion exchanger governed by ligand exchange was developed and investigated to increase the selectivity for phosphate. The current study using organic/inorganic anion exchanger developed with Lewis acid-base interaction confirms the selectivity for phosphate over sulfate. According to isotherm test and column test, the value of the maximum phosphate uptake (Q) showed 64 mg/g as $po{_4}^{3-}$ and the breakthrough for phosphate occurs after 1000 min and completely finishes at 2500 min, respectively.