• Title/Summary/Keyword: Inorganic nitrogen ($NO_3-N$, $NH_4-N$)

Search Result 85, Processing Time 0.033 seconds

Seasonal Change in Inorganic Nitrogen Content in the Soil Profile of Urea-Fertilized Grassland (요소(尿素)(Urea)를 시용(施用)한 초지(草地)의 토양단면(土壤斷面)에서 무기태질소(無機態窒素) 함량(含量)의 계절적(季節的) 변화)

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.171-176
    • /
    • 1991
  • Field experiment was conducted to investigate the seasonal change in inorganic nitrogen content in grassland soil profile after urea application. Urea was applied at the levels of 0 (0N), 14 (14N), and 28 (28N) Kg N per 10a. Soil samples were taken at every 20 cm interval upto 100 cm soil depth in spring (May 26), summer (July 27), and autumn (October 18) and analysed for total and inorganic nitrogen ($NH_4-N$ and $NO_3-N$). The results obtained are as follows ; 1. In spring, the $NH_4-N$ content of ON treatment was higher than $NO_3-N$ content both in surface and subsoil. The urea application increasing both $NH_4-N$ and $NO_3-N$ contents in the surface soils and these contents decreased with soil depth. 2. In summer, increase in urea application rate elevated the $NO_3-N$ content in soil profile of 0 to 100cm and the content reached upto 42 ppm in the 28N treatment. 3. The seasonal difference in $NH_4-N$ content between summer and autumn was insignificant throughout soil profile. Soil $NO_3-N$ content in autumn were 7 and 14 ppm for 14N and 28N respectively, showing very low values compared with that of summer. 4. The ratio of inorganic nitrogen to total nitrogen increased with soil depth and with urea application rates.

  • PDF

Fertilizer Recommendation Based on Soil Testing for Tomato in Plastic Film House (토양검정에 의한 시설재배 토마토의 적정 시비량 추천)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.350-358
    • /
    • 1998
  • To determine the optimum application of fertilizers for the cultivation of tomato in plastic film house, eighteen soils which contained different salt contents were taken from four different areas under plastic film house cultivation, Youngdong, Boeun, Cheongweon county, and Cheongju city. The dry weight and the amount of N, P, and K uptakes of tomato in the plot with no fertilization were considered as the factors representing the fertility of the soil. The differences in the dry weight and in the amounts of N, P, and K uptakes of plants between the plots with fertilization and with no fertilization were considered as the factors representing the total effect of fertilizer and the effects of fertilizer N, P, and K, respectively. These factors of soil fertility and fertilizer effects were estimated by correlation and regression with the chemical properties of the soil in order to find the critical levels and recommended method for optimum fertilization of tomato. The standardized partial regression coefficients of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the factors of fertility ranged from 247 to 1,159, showing the best, while those of the others ranged from 0.02 to 4.02. Those of inorganic nitrogen ($NO_3-N+NH_4-N$) contents in soil for the electrical conductivity were also the best and were ranged from 35.2 to 36.0 compared with the values of less than 1.0 of the others. These results demonstrate that the content of inorganic nitrogen in the soil is the best index for both soil fertility and electrical conductivity of the soil. The critical level of inorganic nitrogen ($NO_3-N+NH_4-N$) in the soil for maximum productivity with zero value of fertilizer effects for tomato, estimated through Cate-Nelson split method was $220mg\;kg^{-1}$. This was the same value as evaluation for the cultivation of chinese cabbage. In conclusion, for optimal application of fertilizer in plastic film house, 1) no fertilization is recommended when the contents of inorganic nitrogen in the soil is more than $220mg\;kg^{-1}$; however, 2) in the case of less than $220mg\;kg^{-1}$ of inorganic nitrogen content in the soil, the optimal level of fertilization could be estimated through the regression equation between fertilizer effects and content of inorganic nitrogen in the soil.

  • PDF

Influence of N Forms to the Ionic Balance of Tobacco Plants (담배식물의 이온균형(均衡)에 미치는 형태별(形態別) 질소(窒素)의 영향)

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.2
    • /
    • pp.139-145
    • /
    • 1986
  • In order to study the influence of nitrate reduction to ionic balance in tissue of tobacco plant, differneces in amounts of those cations and anions were determined and these balances were compared with contents of organic acids and activities of nitrate reductase, while they were fertilized with different nitrogen sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) in water culture. The results of studies are summerized as follows; 1. Total uptake of inorganic cations was the highest in nitrate-fed plants, whereas that of inorganic anions showed the highest level in the plants grown with the mixture ($NO_3+NH_4$). The amounts of inorganic cations and anions were comparable in two treatments containing $NH_4-N$, but in plants treated with nitrate only had much higher level of inorganic cations than others. 2. Deficiency in the amount of inorganic anions in nitrate-fed plants was balanced with organic acids, dominantly with malic acid among them. But another two $NH_4-N$ fed plant sustained equilibrium between inorganic cations and anions. 3. Reduction of nitrate was raised in tissues of nitrate-fed plants. By the results of nitrate reduction, cations maintained equilibrium with nitrate ion were let loose. The replacement of inorganic anions with organic anions could be a compensation process for the loss of uptaken nitrate ions which must be reduced to be incorporated into organic N compounds.

  • PDF

Effect of the Application of Sucrose on Rapid Decrease of Soil Inorganic Nitrogen (Sucrose 처리가 토양 무기태질소의 신속 감소에 미치는 영향)

  • Ku, Hyun-Hwoi;Lim, Woo-Jin;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.424-429
    • /
    • 2010
  • To solve the problems with excessive accumulation of soil inorganic N and resulting saline soils from overuse of nitrogen fertilizer, the effect of sucrose application on decrease of soil inorganic N content and electrical conductivity (EC) was studied. Sucrose treatment greatly reduced ${NH_4}^+$-N content in soil. The amount of reduction was greater as the amount of sucrose treatment was increased. When ${NH_4}^+$-N content was reached the lowest point (about 10 mg $kg^{-1}$or lower), the C/N ratio, which determines the amount of sucrose treatment, was around 10 regardless of initial ${NH_4}^+$-N content. For the rate of ${NH_4}^+$-N reduction 15~36 hours was required to reduce the initial ${NH_4}^+$-N content to half, and 36~69 hours to lower ${NH_4}^+$-N content to the lowest point (about 10 mg $kg^{-1}$or lower). In addition, sucrose treatment greatly lowered ${NO_3}^-$-N content. In case of C/N ratio above 10, initial ${NO_3}^-$-N content of 348 mg $kg^{-1}$ was reduced to the lowest of 14~21 mg $kg^{-1}$. As for the rate of ${NO_3}^-$-N reduction by sucrose treatment, it took 36~60 hours for ${NO_3}^-$-N content to reach the lowest point for C/N ratio of 10 or higher, and it took 3 weeks, comparably longer time, for C/N ratio of 5. Lowering soil EC from sucrose treatment showed the same trend as ${NO_3}^-$-N content. As an important energy and carbon source for humankind, sugar should not be wasted and must be carefully applied to soil. In principle, the best way of preventing salt accumulation in soil is to optimize the fertilizer input. However, when over-fertilization should be dealt with, the sucrose treatment would be a possible and effective counter-measure to reduce overdosed nitrogen sources in soil.

Effects of Persicaria thunbergii on Nitrogen Retention and Loss in Wetland Microcosms (습지 미소생태계에서 질소 보유와 제거에 대한 고마리 ( Persicaria thunbergii ) 의 효과)

  • Woo, Yeun-Kyung;Eun-Jin Park;Dowon Lee;Kye Song Lee
    • The Korean Journal of Ecology
    • /
    • v.19 no.2
    • /
    • pp.179-189
    • /
    • 1996
  • Growth and nitrogen retention of Persicaria thunbergii were investigated in the wetland microcosms which contained the plants growing on soil bed. Nitrogen solution was supplied to the microcosms with the same amount of $NH_4^{+}-N\; and\; NO_3^{-}-N$ at the rates of 0.00, 0.78, 1.57, 3.14g $N{\cdot}m^{-2}{\cdor}wk^{-1}$ from May 1 to August 31, 1995. The solution was detained for 5 days to react with soil and plant and then allowed to leach. The contents of NH_4^{+}-N\;and\; NO_3^{-}-N$ in the leachate, total Kjeldahl nitrogen, plant biomass, and soil characteristics were determined. Nitrogen retained by plant was estimated as the increment of TKN in plant biomass. The addition of 0.78 and 1.57g $N{\cdot}m^{-2}{\cdot}wk^{-1}$ resulted in significant increase of plant biomass. However, plant growth was inhibited when nitrogen was added at the rate of 3.14g $N{\cdot}m^{-2}{\cdot}wk^{-1}$. Overall, the plant biomass was positively correlated with the amount of nitrogen retained by plant and soil system. The amounts of $NO_3^{-}-N$ leached from the microcosms were 5~10 times higher than those of $NH_4^{+}-N$. While total nitrogen added ranged from 143.2 to 576.5g $N/m^2$, total leaching loss of inorganic nitrogen and nitrogen retained by plant was as little as 1.04~22.71g $N/m^2$, and 5.46~12.91g $N/m^2$, respectively. Then, the plant seemed to contribute to KDICical and microbial immobilization of nitrogen in the soil. Finally, it is suggested that a large portion of nitrogen added was lost into the air by denitrification and volatilizaton, and / or leached in organic forms.

  • PDF

Systematic Propagation of High Quality Garlic (Allium sativum L.) Through Shoot Apical Meristem Culture II. Effects of Sucrose Concentration and Nitrogen Source on In Vitro formation of Bulblets (생장점배양에 의한 우량마늘 체계적 증식 II 기내 인경 비대에 미치는 질소 및 Sucrose의 영향)

  • Lee, Eun-Mo;Lee, Young-Bok
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.4
    • /
    • pp.193-200
    • /
    • 1994
  • The effects of sucrose concentration and nitrogen source on shoot growth and in vitro formation of garlic (Allium sativum L. cv Seosan) bulblet were investigated in order to systematize propagation of high quality garlic through a shoot apical meristem culture. Shoot differentiation was not affected by sucrose concentration and nitrogen source, but plantlets which contain medium of NH$_4$- N or NH$_4$ + NO$_3$ were vigorous and healthy in .appearance. Shoot growth was vigorous in changeing of nitrogen source. The best quality of in vitro bulblets was obtained in culture on the medium containing 8% sucrose and NH$_4$ - N, and the formation of bulblet was more effective when plantlets were subjected to cold treatment before use. NH$_4$-N was a major factor for shoot growth and bulblet development, but NO$_3$-N was not and suppressed $K^{+}$absorption. The level of ethylene production was not affected by different nitrogen sources, however this production was enhanced in medium containing a higher concentration of sucrose.e.

  • PDF

Movement of Applied Nutrients through Soils by Irrigation -III. Effect of Soil Water on the Movement of Nitrogen (관수(灌水)에 의(依)한 시비양분(施肥養分)의 토양중(土壤中) 이동(移動)에 관(關)한 연구(硏究) -III. 토양수분(土壤水分) 조건(條件)에 따른 질소(窒素)의 이동(移動))

  • Ryu, Kwan-Shig;Yoo, Sun-Ho;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.232-237
    • /
    • 1994
  • Field microplot(D 20cm, 1 85cm) experiment filled with Bonryang sandy loam soil(Typic Udifluvents) was conducted to obtain quantitative information on the movement of applied nitrogen under different soil moisture regimes and ladino clover cultivation. Urea applied to the soil was quickly transformed into $NH_4$-N which was slowly to $NO_3$-N which governed the downward movement of inorganic N applied in the soil. Downward movement of inorganic nitrogen was relatively slow in the early growing stages of ladino clover when $NH_4$-N form was the major inorganic nitrogen in the soil. In the later growing stages when $NO_3$-N was the major form, inorganic nitrogen moved rapidly with soil water. Favorable soil moisture condition increased downward movement and plant uptake of inorganic nitrogen. In the non irrigated bare soil 92% of applied nitrogen was leached downwards out of the microplots at the final harvest. Under the non-irrigated condition 57% of applied nitrogen was taken up by plants and 37% of nitrogen remained in the soil 5.5 months after sowing. Nitrogen uptake by plants in the microplots irrigated at 0.2 bar was 4.03g/microplot at the final harvest, which was more than the amount of nitrogen applied.

  • PDF

Kinetics of Removing Nitrogenous and Phosphorus Compounds from Swine Waste by Growth of Microalga, Spirulina platensis

  • Kim, Min-Hoe;Chung, Woo-Taek;Lee, Mi-Kyung;Lee, Jun-Yeup;Ohh, Sang-Jip;Lee, Jin-Ha;Park, Don-Hee;Kim, Dong-Jin;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.455-461
    • /
    • 2000
  • Abstract Spirulina platensis was grown in SWlUe waste to reduce inorganic compowlds and simultaneously produce feed resources. Spirulina platensis prefers nitrogenous compounds in Ibe order: $NH_4^{+}-N>NO_3^{-}-N>simple-N$ such as urea and simple amino acids. It even consumes $NH_4^{+}-N$ first when urea or nitrate are present. Therefore, the content of residual $NH_4^{+}-N$ in Spimlina platensis cultures can be determined by the relative extent of the following processes: (i) algal uptake and assimilation; (ii) ammonia stripping; and (iii) decomposition of urea to NH;-N by urease-positive bacteria. The removal rates of total nitrogen ffild total phosphorus were estimated as an indicator of the treatment effIciency. It was found that Spirulina platensis was able to reduce 70-93% of $P_4^{3-}-P$, 67-93% of inorganic nitrogen, 80-90% of COD, and 37-56% of organic nitrogen in various concentrations of swine waste over 12 days of batch cultivation. The removal of inorganic compounds from swine waste was mainly used for cell growth, however, the organic nitrogen removal was not related to cell growlb. A maximum cell density of 1.52 dry-g/l was maintained with a dilution rate of 0.2l/day in continuous cultivation by adding 30% swine waste. The nitrogen and phosphorus removal rates were correlated to the dilution rates. Based on the amino acid profile, the quality of the proteins in the Spirulina platensis grown in the waste was the same as that in a clean culture.ulture.

  • PDF

Response of N. Sources to Nutrient Uptake of Tobacco Plant (질소원(窒素源)에 따른 담배식물의 양분흡수반응(養分吸收反應))

  • Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.413-418
    • /
    • 1985
  • Tobacco plant(8-leaf seedlings) were grown on water culture fertilized with different N sources ($NO_3-N$, $NH_4-N$, $NO_3+NH_4-N$) during 15 days. Daily uptake of nutrients and inorganic constituents in plants were investigated in relation to growth responses of them. 1. Nitrate-fed plant showed higher daily uptake of inorganic cations than those in other treatments, and reached about two times higher uptake of nitrogen and three times more uptake of cations (K, Ca, Mg). Potassium was preferentially uptaken at a very fast rate from the beginning after treatment. Also $NO_3-N$ tended to be taken up selectively by the plant from the mixture of nitrate and $NH_4-N$. 2. The initial pH (pH 6.0) of culture medium drastically changed into acid (pH 4.0) in the $NH_4-N$ medium, but into slightly higher (pH 6.4) in the nitrate when measured after exposure of 24 hours. The mixture also tended to show an acidity but much weaker than $NH_4-N$ solution. 3. Nitrate-fed plant had a normal growth pattern but $NH_4-N$ fed plant almost stopped growing. Those plants containing both nitrate and ammonium N were also showed very poor growth.

  • PDF

Determination of the Origin in both Dissolved Inorganic Nitrogen and Phytoplankton at the Lake Paldang using Stable Isotope Ratios (δ13C, δ15N, δ15N-NO3 and δ15N-NH4) (질산염 및 식물플랑크톤의 안정동위원소비를 이용한 팔당호 수계내의 질소원 기원 연구)

  • Kim, Min-Seob;Lee, Eun-Jeong;Yoon, Suk-Hee;Lim, Bo-La;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.452-458
    • /
    • 2017
  • The nitrogen isotope value in both ammonium and nitrate ion were determined at 9 stations during both June and August 2016, in order to understand the origin of DIN at the Han river. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in 8 stations (CP, SB, MHC, P4, SJ, SBC, P2, SC) were no significant variation. However ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in KK (Kyeongan stream) showed significant different in comparison with 8 stations, with an apparent increase of nitrogen isotope values. These results indicate that antropogenic nitrogen source influence on KK station. Also the ${\delta}^{13}C$ and ${\delta}^{15}N$ isotope ratio of phytoplankton (Diatom and Cyanobacteria) in KK (Kyeongan stream) showed heavier values, compared to other study stations. These results indicate that nitrogen isotope value in phytoplankton effects by different nitrogen source in study sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the identification of dissolved inorganic nitrogen origin in aquatic environments.