• Title/Summary/Keyword: Inorganic and organic P

Search Result 521, Processing Time 0.033 seconds

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • Buddhi Charana, Walpola;Kodithuwakku Kankanange Indika Upali, Arunakumara;Min Ho, Yoon
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.463-481
    • /
    • 2022
  • Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.

The Effects of Replacing Inorganic with a Lower Level of Organically Complexed Minerals (Cu, Zn and Mn) in Broiler Diets on Lipid Peroxidation and Antioxidant Defense Systems

  • Aksu, Devrim Saripinar;Aksu, Taylan;Ozsoy, Bulent;Baytok, Erol
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1066-1072
    • /
    • 2010
  • In this study, the effects of replacing inorganic copper, zinc and manganese with different levels of organic complexes of the same trace minerals on the lipid peroxidation and antioxidant defense systems in broilers were investigated. Two-hundred Ross-308 one-day-old broiler chickens were placed on controlled diets until 42 d of age. The experimental animals were divided into four groups comprising three experimental groups and one control group, each consisting of 50 chickens. All groups were also divided into five subgroups each containing 10 broiler chicks. The mineral content of the control group diet was controlled using a standard inorganic mineral premix with supplement levels and sources of trace minerals typical of commercial broiler diets according to the National Research Council (NRC) (containing 8 mg Cu as $CuSO_4$, 40 mg Zn as $ZnSO_4$, and 60 mg Mn as MnO, per kg). In the experimental diets, mineral premix was also comprised of inorganic formulations, except for those of Cu, Zn and Mn. Organically-complexed Cu, Zn, and Mn were separately added to the basal diet at 1/3 (L1), 2/3 (L2) and 3/3 (L3) levels with respect to the NRC recommendation, as Bioplex $Cu^{TM}$, Bioplex $Zn^{TM}$, Bioplex $Mn^{TM}$. At the end of the trial, the plasma Zn level significantly increased when the plasma Cu level significantly decreased (p<0.05) in chickens fed at 2/3 and 3/3 levels of organically complexed minerals. The liver trace mineral concentrations were significantly higher in chickens fed inorganic trace minerals in comparison to those fed organically-complexed minerals. The plasma malondialdehyde (MDA) level of experimental chickens was decreased in groups receiving levels of organic Cu, Zn and Mn in comparison to those fed inorganic forms (p<0.01). The erythrocyte superoxide dismutase (SOD) activity was higher in all groups receiving the organic mineral supplements in comparison to those fed inorganic forms (p<0.01). No differences were observed on either the erythrocyte catalase (CAT) activity or the plasma ceruloplasmin (Cp) levels, and the liver MDA levels and liver CAT and SOD activities in any of the groups that received the organic supplements of Cu, Zn, and Mn. It was concluded that supplementation of lower levels of organically-complexed copper, zinc, and manganese instead of their inorganic forms in diets had no negative effects on the antioxidant defense system in broilers.

Separation of Inorganic Sludge and MAP from Municipal Wastewater Sludge Using Hydrocyclone (습식 사이클론을 이용한 하수슬러지내 무기성분 및 MAP 분리)

  • Lee, Dong-Woo;Bae, Kang-Hyeong;Cho, Kun-Sang;Kim, Sung-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.135-142
    • /
    • 2014
  • The performance of inorganic sludge separation system is evaluated. Anaerobic digester effluent sludge is used for feed sludge of this system and hydrocyclone is used for inorganic sludge separation. For phosphorus removal and recovery $MgCl_2$ is pumped into MAP growth tank, a component of inorganic sludge separation system. Using this system inorganic sludge which contained less than 40 % of organic matter can be discharged stably and the maximum amount of separated inorganic sludge is 13.4 % of influent sludge based on dry solid. The amount of phosphorus recovered as MAP(as P) is 16.7 % to influent T-P.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

Vertical Distribution of Biogenic Elements and its Implication on Holocene Paleoclimatic Records in the Maxwell Bay of the South Shetland Islands, West Antarctica

  • Kim, Dong-Seon;Park, Byong-Kwon;Yoon, Ho-Il
    • Journal of the korean society of oceanography
    • /
    • v.32 no.2
    • /
    • pp.69-74
    • /
    • 1997
  • Depth profiles of organic carbon (C), biogenic silica (Si), and inorganic phosphorus (P) in Maxwell bay sediments were determined to investigate paleoclimatic changes during Holocene. Organic C and biogenic Si contents generally show a down-core decrease trend, which appears to be mostly controlled by their vertical fluxes through productivity in the surface waters, but it is uncertain that inorganic P contents are directly influenced by productivity changes with time. Before 4000 yr B.p. marine productivity seemed to be almost zero because ice permanently covered the surface waters of the study area. As the climate started to become relatively warm at 4000 yr B.p., ice was sporadically melted in the surface waters and thereby marine productivity gradually increased until 1500 yr B.p. For the last 1500 year, marine productivity must be high enough to overcome the dilution by high terrigenous sedimentation, thus that period was the warmest during the last 6000 year.

  • PDF

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.14 no.8
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

Cultural Conditions for Mass Production of Antagonistic Bacillus subtills CAP134 (길항균 Bacillus subtillis CAP134의 대량생산을 위한 배양조건)

  • 박흥섭;조정일
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.87-99
    • /
    • 1996
  • Cultural conditions for mass production of the antagonistic bacteria, Bacillus subtills CAP134 against pathogens causing major airborne diseases to apple tree, effect of temperature, pH, carbon and nitrogen source in the culture broth were investigated. The bacterial growth was most vigorous when the temperature and pH of the culture broth was 30~$35^{\circ}$C, and 7, respectively. As for carbon source, dextrose was best followed in order by dextrose(monosaccharides)>sucrose(disaccharides)$\geq$saccharose(di-saccharides)>starch (polysaccharides). Among different sugars, bacterial growth was favored by in the order of brown, black and white sugars, indicating that the bacterial growth might be promoted by the minor elements presented as impurities in the less purified sugars. As for nitrogen source, organic forms were better to bacterial growth than inorganic forms, that is polypeptone was best followed in order by soy sauce, soybeen milk and inoganic nitrogens. Differences in bacterial growth among different forms of inorganic nitrogen were negligible.

  • PDF

Characteristics of Phosphorus Accumulation in Rotation System of Plastic Film House and Paddy Soils (시설재배지에서 윤답전환체계가 인산분포에 미치는 영향)

  • Lee, Yong-Bok;Lee, In-Bog;Hwang, Jun-Young;Lee, Kyung-Dong;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.47-58
    • /
    • 2002
  • Much of the plastic film house soils in the southern part of the Korean peninsula are managed using a upland-paddy rotation culture system (hereafter, RS) to prevent salt accumulation in soil. However, information on the effects of RS on soil properties and environmental conservation is limited. In order to determine the effects of RS on soil properties, 22 fields under RS and 20 fields under a non-rotation system (hereafter, NRS) in plastic film houses were selected in Chinju, in southern Korea, and the P distribution characteristics were investigated, including the chemical properties. The RS contributed to the removal of water-soluble salts in the surface layer and to the redistribution of organic matter evenly in the soil profile. In the AP horizon, available phosphorus levels were $1,611mg\;kg^{-1}$ in RS and $1,789mg\;kg^{-1}$ in NRS, which markedly exceeds the optimum range for plant cultivation. Total P was lower in RS (average $4,593mg\;kg^{-1}$) than in NRS (average $5,440mg\;kg^{-1}$) and this decrease was taken to be an effect of RS. Inorganic P was the predominant form of P in both systems, followed by organic P and residual P. A soil profile showed that total and inorganic P concentrations decreased with depth in both systems. However, organic P increased withdepth in RS, which was in contrast to that noted in NRS. The increase in organic P with depth in RS implied that organically rather than inorganically derived phosphate moved through the soil. The concentrations of water-soluble P, Ca-P and Al-P were higher in NRS than in RS soil profiles, but the Fe-P concentration was higher in RS than in NRS, which might be affected by the anaerobic conditions found in paddy soils. In both systems, the Al-P form of extractable P predominated in the surface layer, followed by Ca-P, Fe-P and water-soluble P. With increasing depth, the composition rate of Ca-P to extractable P decreased to less than 10% in the 60-70cm depth, as Fe-P dominated at this level. The content of water-soluble P, potentially the main source of eutrophication, was higher in NRS than in RS. These results indicated that the RS used in plastic film houses contributed to the removal of water-soluble salts but only slightly decreased the phosphate concentration.

Titanium Dioxide Nanofibers Prepared by Using Electrospinning Method

  • Ding, Bin;Kim, Chul Ki;Kim, Hak Yong;Seo, Min Kang;Park, Soo Jin
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • The synthesis of titanium dioxide nanofibers with 200-300nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from $600^{\circ}C$ to $1000^{\circ}C$.