• 제목/요약/키워드: Inorganic and organic P

검색결과 518건 처리시간 0.034초

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • Buddhi Charana, Walpola;Kodithuwakku Kankanange Indika Upali, Arunakumara;Min Ho, Yoon
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.463-481
    • /
    • 2022
  • Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

The Effects of Replacing Inorganic with a Lower Level of Organically Complexed Minerals (Cu, Zn and Mn) in Broiler Diets on Lipid Peroxidation and Antioxidant Defense Systems

  • Aksu, Devrim Saripinar;Aksu, Taylan;Ozsoy, Bulent;Baytok, Erol
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권8호
    • /
    • pp.1066-1072
    • /
    • 2010
  • In this study, the effects of replacing inorganic copper, zinc and manganese with different levels of organic complexes of the same trace minerals on the lipid peroxidation and antioxidant defense systems in broilers were investigated. Two-hundred Ross-308 one-day-old broiler chickens were placed on controlled diets until 42 d of age. The experimental animals were divided into four groups comprising three experimental groups and one control group, each consisting of 50 chickens. All groups were also divided into five subgroups each containing 10 broiler chicks. The mineral content of the control group diet was controlled using a standard inorganic mineral premix with supplement levels and sources of trace minerals typical of commercial broiler diets according to the National Research Council (NRC) (containing 8 mg Cu as $CuSO_4$, 40 mg Zn as $ZnSO_4$, and 60 mg Mn as MnO, per kg). In the experimental diets, mineral premix was also comprised of inorganic formulations, except for those of Cu, Zn and Mn. Organically-complexed Cu, Zn, and Mn were separately added to the basal diet at 1/3 (L1), 2/3 (L2) and 3/3 (L3) levels with respect to the NRC recommendation, as Bioplex $Cu^{TM}$, Bioplex $Zn^{TM}$, Bioplex $Mn^{TM}$. At the end of the trial, the plasma Zn level significantly increased when the plasma Cu level significantly decreased (p<0.05) in chickens fed at 2/3 and 3/3 levels of organically complexed minerals. The liver trace mineral concentrations were significantly higher in chickens fed inorganic trace minerals in comparison to those fed organically-complexed minerals. The plasma malondialdehyde (MDA) level of experimental chickens was decreased in groups receiving levels of organic Cu, Zn and Mn in comparison to those fed inorganic forms (p<0.01). The erythrocyte superoxide dismutase (SOD) activity was higher in all groups receiving the organic mineral supplements in comparison to those fed inorganic forms (p<0.01). No differences were observed on either the erythrocyte catalase (CAT) activity or the plasma ceruloplasmin (Cp) levels, and the liver MDA levels and liver CAT and SOD activities in any of the groups that received the organic supplements of Cu, Zn, and Mn. It was concluded that supplementation of lower levels of organically-complexed copper, zinc, and manganese instead of their inorganic forms in diets had no negative effects on the antioxidant defense system in broilers.

습식 사이클론을 이용한 하수슬러지내 무기성분 및 MAP 분리 (Separation of Inorganic Sludge and MAP from Municipal Wastewater Sludge Using Hydrocyclone)

  • 이동우;배강형;조건상;김성홍
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.135-142
    • /
    • 2014
  • The performance of inorganic sludge separation system is evaluated. Anaerobic digester effluent sludge is used for feed sludge of this system and hydrocyclone is used for inorganic sludge separation. For phosphorus removal and recovery $MgCl_2$ is pumped into MAP growth tank, a component of inorganic sludge separation system. Using this system inorganic sludge which contained less than 40 % of organic matter can be discharged stably and the maximum amount of separated inorganic sludge is 13.4 % of influent sludge based on dry solid. The amount of phosphorus recovered as MAP(as P) is 16.7 % to influent T-P.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments as Affected by C:N Ratio and Temperature in Paddy Soil

  • Shin, Jae-Hoon;An, Nan-Hee;Lee, Sang-Min;Ok, Jung-Hun;Lee, Byun-Woo
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.712-719
    • /
    • 2016
  • Understanding N mineralization dynamics in soil is essential for efficient nutrient management. An anaerobic incubation experiment was conducted to examine N mineralization potential and N mineralization rate of the organic amendments with different C:N ratio in paddy soil. Inorganic N in the soil sample was measured periodically under three temperature conditions ($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$) for 90 days. N mineralization was accelerated as the temperature rises by approximately $10%^{\circ}C^{-1}$ in average. Negative correlation ($R^2=0.707$) was observed between soil inorganic N and C:N ratio, while total organic carbon extract ($R^2=0.947$) and microbial biomass C ($R^2=0.824$) in the soil were positively related to C:N ratio. Single exponential model was applied for quantitative evaluation of N mineralization process. Model parameter for N mineralization rate, k, increased in proportion to temperature. N mineralization potential, $N_p$, was very different depending on C:N ratio of organic input. $N_p$ value decreased as C:N ratio increased, ranged from $74.3mg\;kg^{-1}$ in a low C:N ratio (12.0 in hairy vetch) to $15.1mg\;kg^{-1}$ in a high C:N ratio (78.2 in rice straw). This result indicated that the amount of inorganic N available for crop uptake can be predicted by temperature and C:N ratio of organic amendment. Consequently, it is suggested that the amount of organic fertilizer application in paddy soil would be determined based on temperature observations and C:N ratio, which represent the decomposition characteristics of organic amendments.

Vertical Distribution of Biogenic Elements and its Implication on Holocene Paleoclimatic Records in the Maxwell Bay of the South Shetland Islands, West Antarctica

  • Kim, Dong-Seon;Park, Byong-Kwon;Yoon, Ho-Il
    • Journal of the korean society of oceanography
    • /
    • 제32권2호
    • /
    • pp.69-74
    • /
    • 1997
  • Depth profiles of organic carbon (C), biogenic silica (Si), and inorganic phosphorus (P) in Maxwell bay sediments were determined to investigate paleoclimatic changes during Holocene. Organic C and biogenic Si contents generally show a down-core decrease trend, which appears to be mostly controlled by their vertical fluxes through productivity in the surface waters, but it is uncertain that inorganic P contents are directly influenced by productivity changes with time. Before 4000 yr B.p. marine productivity seemed to be almost zero because ice permanently covered the surface waters of the study area. As the climate started to become relatively warm at 4000 yr B.p., ice was sporadically melted in the surface waters and thereby marine productivity gradually increased until 1500 yr B.p. For the last 1500 year, marine productivity must be high enough to overcome the dilution by high terrigenous sedimentation, thus that period was the warmest during the last 6000 year.

  • PDF

Comparison of Flocculation Characteristics of Humic Acid by Inorganic and Organic Coagulants: Effects of pH and Ionic Strength

  • Xu Mei-Lan;Lee Min-Gyu;Kam Sang-Kyu
    • 한국환경과학회지
    • /
    • 제14권8호
    • /
    • pp.723-737
    • /
    • 2005
  • The effects of pH (5, 7 and 9) and ionic strength of different salts on the flocculation characteristics of humic acid by inorganic (alum, polyaluminum chloride (PAC) with degree of neutralization, r=(OH/Al) of 1.7) and organic (cationic polyelectrolyte) coagulants, have been examined using a simple continuous optical technique, coupled with measurements of zeta potential. The results are compared mainly by the mechanisms of its destabilization and subsequent removal. The destabilization and subsequent removal of humic acid by PAC and cationic polyelectrolyte occur by a simple charge neutralization, regardless of pH of the solution. However, the mechanism of those by alum is greatly dependent on pH and coagulant dosage, i.e., both mechanisms of charge neutralization at lower dosages and sweep flocculation at higher dosages at pH 5, by sweep flocculation mechanism at pH 7, and little flocculation because of electrostatic repulsion between negatively charged humic acid and aluminum species at pH 9. The ionic strength also affects those greatly, mainly based on the charge of salts, and so is more evident for the salts of highly charged cationic species, such as $CaCl_2$ and $MgCI_2.$ However, it is found that the salts have no effect on those at the optimum dosage for alum acting by the mechanism of sweep flocculation at pH 7, regardless of their charge.

길항균 Bacillus subtillis CAP134의 대량생산을 위한 배양조건 (Cultural Conditions for Mass Production of Antagonistic Bacillus subtills CAP134)

  • 박흥섭;조정일
    • 한국유기농업학회지
    • /
    • 제5권1호
    • /
    • pp.87-99
    • /
    • 1996
  • Cultural conditions for mass production of the antagonistic bacteria, Bacillus subtills CAP134 against pathogens causing major airborne diseases to apple tree, effect of temperature, pH, carbon and nitrogen source in the culture broth were investigated. The bacterial growth was most vigorous when the temperature and pH of the culture broth was 30~$35^{\circ}$C, and 7, respectively. As for carbon source, dextrose was best followed in order by dextrose(monosaccharides)>sucrose(disaccharides)$\geq$saccharose(di-saccharides)>starch (polysaccharides). Among different sugars, bacterial growth was favored by in the order of brown, black and white sugars, indicating that the bacterial growth might be promoted by the minor elements presented as impurities in the less purified sugars. As for nitrogen source, organic forms were better to bacterial growth than inorganic forms, that is polypeptone was best followed in order by soy sauce, soybeen milk and inoganic nitrogens. Differences in bacterial growth among different forms of inorganic nitrogen were negligible.

  • PDF

시설재배지에서 윤답전환체계가 인산분포에 미치는 영향 (Characteristics of Phosphorus Accumulation in Rotation System of Plastic Film House and Paddy Soils)

  • 이용복;이인복;황준영;이경동;김필주
    • 한국토양비료학회지
    • /
    • 제35권1호
    • /
    • pp.47-58
    • /
    • 2002
  • 남부지방을 중심으로 많은 시설재배지가 염류집적의 문제를 해결하기 위해 윤답전환체계로 운영되고 있으나, 윤답전환체계가 토양의 이화학적 특성 및 인산의 집적에 미치는 영향에 대한 연구가 거의 없었다. 경남 진주지역 윤답전환체계 운영시설재배지(RS) 22곳의 토양을 깊이별로 채취하여 이화학적 특성 및 인산의 분포특성을 인근 비윤답전환 시설재배지(NRS) 토양과 비교하였다. RS 표층토(Ap)의 전기전도도(EC)는 NRS에 비해 약 평균 약 $1.0dS\;m^{-1}$ 정도가 낮았으나 30cm 이하의 심층부에서는 RS의 EC값이 NRS에 비해 높아졌다. 깊이가 깊어질수록 두 형태간 EC값의 차이는 증가하여 세척된 염분이 상당부분 심층부로 이동되고 있음을 확인할 수 있었다. 기대와 달리 표층토의 유기물 함량은 RS가 NRS에 비해 약 $3g\;kg^{-1}$이 높았으며 이는 두 형태가 년간 유기물 시용량 차이에 기인된 것으로 해석되었다. 깊이가 증가 할수록 유기물 농도는 EC분포와 동일한 경향을 보여 윤답전환 과정중 단소의 유기물이 심층부로 이동되고 있음을 추정할 수 있었다. 전인산(T-P) 함량은 RS의 표층토가 NRS에비해 약 $850mg\;kg^{-1}$ 낮았으며, 이러한 경향은 심토까지 계속되었다. T-P의 약 90% 이상은 Inorganic P의 형태이었으며, Organic P와 Residual P가 저은 비율로 분포하였다. Inorganic P는 T-P에서와 같이 RS가 NRS에 비해 낮은 농도로 분포하였으며 깊이가 증가함에 따라 큰 폭으로 감소하였다. 이에 반해 Organic-P는 30cm 이상의 표층토에서는 RS가 NRS에 비해 낮은 농도로 분포하였으나 30cm 이하의 심층토에서는 RS가 NRS에 비해 높은 농도로 분포하였다. 특히 RS에서 Organic P는 NRS에서와 달리 깊이가 깊어짐에 따라 점점 증가하여 윤답전환지에서 인산이 상당 부분 Organic P의 형태로 이행되고 있음을 알 수 있었다. 표층토내 Extractable P는 Al-P와 Ca-P가 가장높은 비율로 존재하였으며, Fe-P와 수용성 P(W-P)의 순의 낮은 비율로 분포하였다. Ca-P와 W-P는 전 토양깊이에서 RS가 NRS에 비해 낮았으나 Al-P는 두 형태간 큰 차이가 없었다. 이에 반해 Fe-P는 RS가 NRS에 비해 높은 농도로 분포하였으며 20~40cm 사이에 가장 높은 농도로 분포하여 논토양 조건에서 영향을 받은 것으로 판단되었다. 결과적으로 윤답전환에 의한 약간의 T-P의 감소는 주로 W-P, Ca-P와 Organic P 형태로 주로 이동되었던 것으로 간접 해석되나 그 양은 기대했던 것에 비해 미미한 수준인 것으로 나타났다.

Titanium Dioxide Nanofibers Prepared by Using Electrospinning Method

  • Ding, Bin;Kim, Chul Ki;Kim, Hak Yong;Seo, Min Kang;Park, Soo Jin
    • Fibers and Polymers
    • /
    • 제5권2호
    • /
    • pp.105-109
    • /
    • 2004
  • The synthesis of titanium dioxide nanofibers with 200-300nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from $600^{\circ}C$ to $1000^{\circ}C$.