• Title/Summary/Keyword: Inorganic Polyphosphate

Search Result 26, Processing Time 0.031 seconds

A study on phosphate metabolism in Undaria cells (Undaria 세포의 인산대사에 관한 연구)

  • 이종삼;박영복
    • Korean Journal of Microbiology
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 1981
  • 1.Each cells homogenized from Undaria were reacted in reaction micture to persue the phosphate metabolism in Undaria cell. Aliquots of the cells were taken out at the begin-ning and at intervals during the reaction, and analyzed for the content of total-P in various fractions of the cell constituents. 2.The P-contents in fraction of polyphosphate "B" decreased remarkably, while that in fraction of RNA polyphosphate "C" showed slow increase. 3.As well as in Chlorella cells, inorganic phosphates in DNA-P, protein-P, and lipid-P were transferred from polyphosphate, RNA-P turnovered from inorganic phosphate that is in cytoplasm, and RNA polyphosphate complex from polyphosphate, and it was suggested that inorganic phosphates in polyphosphate "B" could transformed into polyphosphate "A" & "C", and polyphosphate "C" into polyphosphate "A".

  • PDF

Effect of inorganic polyphosphate on guided bone regeneration (무기인산염이 골유도재생에 미치는 영향)

  • Chung, Jong-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.491-510
    • /
    • 2005
  • This study was performed to evaluate the effect of inorganic polyphosphate on bone formation in the calvaria of rabbit in the procedure of guided bone regeneration with bovine cancellous bone graft and titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group I used only TR-ePTFE membrane, control group II used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in saline, experimental group III and IV used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 1% or 2% inorganic polyphosphate respectively. After decortication in the calvaria, GBR procedure was performed on 12 rabbits with titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in saline or inorganic polyphosphate. The animals were sacrificed at 2 weeks, 4 weeks, and 8 weeks after the surgery. Decalcified and non-decalcified specimens were processed for histologic and immunohistochemistric analysis. 1. Titanium reinforced ePTFE(TR-ePTFE) membrane showed good spacemaking and cell occlusiveness capability, but it showed poor wound stabilization. 2. The deproteinized bovine bone mineral did not promote bone regeneration, but it acted as a space filler. 3. There was no complete resorption of the deproteinized bovine bone mineral within 8 weeks. 4. 1% inorganic polyphosphate did not promote bone formation, but 2% inorganic polyphosphate promoted bone formation. Within the above results, 2% inorganic polyphosphate could be used effectively for bone regeneration.

Histomorphometric study on effect of the polyphosphate for bone regeneration (무기인산염이 골재생에 미치는 효과에 대한 조직계측학적인 연구)

  • Lee, Young-Seok;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk;Jue, Seong-Suk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.65-75
    • /
    • 2007
  • In this study, author examined the effect of the concentration of the inorganic polyphosphate on the process of the bone regeneration by using the 6 weeks old rabbit with the weight of 2.0kg in average. we performed the experiment by using TR-eITFE membrane filled with collagen immersed with 1%, 2%, and 4% of inorganic polyphosphate, respectively, after removing the proper sized cort-ical bones from the calvaria of rabbit. The experimental results were compared with the one of the following four groups: The control group for membrane only, experimental group I for membrane filled with collagen im-mersed with 1% of inorganic polyphosphate, experimental group II for membrane filled with collagen immerse with 2% of inorganic polyphosphate, experimental group III for membrane filled with colla-gen immersed with 4% of inorganic polyphosphate. The fragments of the tissue with membrane were obtained from each group of the sacrificed rab-bits for 4 or 8 weeks sustained after surgery, were then prestained and coated. New bone formation was assessed by histomorphometric and statistical analysis. We may draw the conclusions from these experiments as following: 1. Collagen was an excellent carrier with a minimal inflammatory reaction and sustaining the form. 2. The sample of the 8th week group has shown the best bone regeneration compared with the cases of all groups including the control group. 3. The samples of collagen immersed with 2% and 4% of inorganic polyphosphate have shown more bone regeneration relative to the sample of the 1% inorganic polyphosphate. 4. The new bone regeneration was shown actively in the group for membrane filled with collagen immersed with 4% of inorganic polyphosphate. With above results, it is strongly suggested the use of inorganic polyphosphate with vehicle under TR-eITFE membrane.

The effect of polyphosphate on exophytic bone formation (무기인산염이 외방성 수직골 형성에 미치는 영향)

  • Lee, Jean;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk;Kwon, Young-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.59-66
    • /
    • 2008
  • Purpose: It has been shown that the inorganic polyphosphate is effective for the regeneration of bones through the preliminary animal test of rabbits. The most effective concentration of the polyphosphate, however, is not known yet. Moreover, the effectiveness of carriers inside human body is not confirmed.. Materials and Methods: In this study, we examined the effect of the concentration of the inorganic polyphosphate on the process of the bone regeneration using the 6 weeks old rabbits with the weight of 2.0 kg in average. We performed the experiment using TR-ePTFE membrane(membrane) filled with collagen immersed in 4%, 8% of inorganic polyphosphate, respectively, following removal of the proper sized cortical bones from the rabbit calvaria. The experimental results were compared with the one of the following four groups: The negative control group for membrane only, the positive control group for membrane filled with collagen, the first experimental group for membrane filled with collagen immersed in 4% of inorganic polyphosphate, and the second experimental group for membrane filled with collagen immerse in 8% of inorganic polyphosphate. The fragments of the tissue with membrane obtained from each group of the sacrificed rabbits for 8 or 16 weeks sustained after surgery were then prestained by the Hematoxylin-Eosin stain and coated by resin to form non-decalcified specimens for the histologic examination and analysis. New bone formation was assessed by histomorphometric and statistical analysis. Results: 1. All groups have shown better bone regeneration at 16weeks than 8weeks. 2. Negative control group has shown more bone regeneration relative to the other groups at 8 and 16 weeks. 3. All experimental groups have shown better bone regeneration relative to positive control group. 4. At 16 weeks, the first experimental group has shown more bone regeneration compared to the second experimental group. Exophytic bone formation is not good at the first and the second experimental groups compared with negative control group. But, the use of 4% inorganic polyphosphate was more effective to bone formation than the use of 8% inorganic polyphosphate. Conclusion: With above results, it is suggested the use of inorganic polyphosphate with vehicle under TR-ePTFE membrane.

The effect of micro-macroporous biphasic calcium phosphate incorporated with polyphosphate on exophytic bone regeneration (무기인산염 함유 이상성 인산칼슘이 외방성 수직골 형성에 미치는 영향)

  • Kim, Dong-Hwan;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.179-190
    • /
    • 2008
  • Purpose: In this study, the effect of micro-macroporous biphasic calcium phosphate(MBCP) incorporated with inorganic polyphosphate for bone regeneration in the calvaria of rabbit was evaluated. Materials and Methods: The procedure of guided bone regeneration was performed with titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. Four animal groups were compared : 1) TR-ePTFE membrane for negative control group, 2) TR-ePTFE membrane filled with MBCP for positive control group, 3) TR-ePTFE membrane filled with MBCP soaked in 4% inorganic polyphosphate for experimental group I, and 4) TR-ePTFE membrane filled with MBCP soaked in 8% inorganic polyphosphate for experimental group II. Results: 1. Negative control group showed the highest new bone formation at 16 weeks. 2. Positive control group showed the smallest new bone formation compared to other groups. 3. 8% inorganic polyphosphate induced more volume of bone formation, otherwise experimental group II did not show significant difference compared to negative control group. Conclusion: These results suggest that inorganic polyphosphate has a promoting effect on bone regeneration, possibly by enhancing osteoconductivity of the carrier and by increasing osteoinductivity of the defected alveolar bone tissue.

Effect of deproteinized bovine bone mineral soaked in inorganic polyphosphate on bone regeneration (무기인산염과 탈단백우골의 혼합사용이 골재생에 미치는 효과)

  • Na, Seong-Yoon;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.77-89
    • /
    • 2007
  • This study was performed to evaluate the effect of deproteinized bovine bone mineral soaked in inorganic polyphosphate on bone regeneration in the calvaria of rabbit in the procedure of guided bone regeneration with titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group used TR-ePTFE membrane filled with de-proteinized bovine bone mineral, experimental group I used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 4% inorganic polyphosphate, experimental group II and III used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 8% or 16% inorganic poly-phosphate respectively. After decortication in the calvaria, GBR procedure was performed on 8 rabbits with only TR-ePTFE membrane or titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in inorganic polyphosphate. The animals were sacrificed at 4 weeks, and 8 weeks af-ter the surgery. Non-decalcified specimens were processed for histologic analysis, and new bone for-mation was assessed by histomorphometric as well as statical analysis. 1. Both control group and experirrental group dermnstrated increasing of new bone formation until 8weeks. 2. At 8 weeks, experimental group I and group II showed the significant difference compared to control group in new bone formation. Especially experimental group II showed the most in-creasing of new bone formation. 3. The higher concentration of inorganic polyphosphate filled, the more volume of bone formation pro-moted, but experimental group III did not reveal significant difference compared to contol group. 4. Deproteinized bovine bone mineral did not resorbed at all until 8 weeks. These results suggest that inorganic polyphosphate has a promoting effect on bone regeneration. possibly by enhancing osteoconductivity of the carrier and by increasing osteoinductivity of the defected alveolar bone tissue, but not as we respect.

Application of Functional Carbohydrates as a Substitute for Inorganic Polyphosphate in Pork Meat Processing (돈육 가공에서 기능성 탄수화물을 이용한 인산염 대체 소재 개발)

  • Park, Ki-Soo;Choi, Yang-Il;Lee, Sang-Hwa;Kim, Chong-Hee;Auh, Joong-Hyuck
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.118-121
    • /
    • 2008
  • Guar gum, ${\kappa}$-carrageenan, alginic acid and chitosan were applied to pork as a model system, and evaluated as a substitute for inorganic polyphosphate, which is one of the essential additives in conventional meat processing. The tested materials did not alter the fat content or pH of the pork meat; however, they did affect water holding capacity and cooking loss significantly. The pork with added guar gum and ${\kappa}$-carrageenan exhibited lower cooking loss than the pork with added polyphosphate. Also, theses materials showed no negative coloring effect within the pork meat blends, which suggest the possibility for their application in final products. In addition, the pork processed with guar gum showed a similar emulsion stability to that with polyphosphate. Overall, guar gum and ${\kappa}$-carrageenan were confirmed as possible substitutes for inorganic polyphosphate.

A Study on Phosphate Metabolism of Chloroplast Isolated from Spinach (시금치에서 분이한 엽록체의 인산대사에 관한 연구)

  • 이종삼
    • Journal of Plant Biology
    • /
    • v.19 no.3
    • /
    • pp.71-84
    • /
    • 1976
  • In order to observe the phosphate metabolism in chloroplast, the contents of inorganic phosphate and various compounds in chloroplast from spinach leaf tissues were investigated during the reaction in the light and dark in the reaction mixture and the turnover of phosphate in chloroplast was compared with that of whole cell system: 1. The phosphorus of DNA in chloroplast appears to be transferred from inorganic phosphate, while in whole cell system from phosphate pool. 2. $^{32}P-phosphate$ content of acid soluble fraction in chloroplast as well as in whole cell system was more increased in the light than dark during the reaction. It was noted to be caused by the stimulation of sugar phosphate synthesis in the light. 3. It was confirmed that polyphosphate exists in chloroplast as well as whole cell. Acid insoluble polyphosphate content in whole cell system was significantly decreased during the reaction and the similar tendency was also observed in chloroplst. It is, therefore, considered that acid insoluble polyphosphate also play an most important role as a phosphate pool respectively in chloroplast and in cytoplasm. 4. Protein and lipid phosphorus in chloroplast as well as whole cell system were transferred from acid insoluble polyphosphate.

  • PDF

Application of L-Arginine as a Substitute for Inorganic Polyphosphate in Pork Sausage Production (소시지 제조시 인산염 대체 소재로 L-Arginine의 활용)

  • Kim, Yong-Duk;Lee, Jun-Soo;Park, Joon-Hyun;Park, Dong-Cheol;Jeon, Young-Seung;In, Man-Jin;Oh, Nam-Soon
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.2
    • /
    • pp.171-174
    • /
    • 2014
  • $\small{L}$-Arginine was applied to processed pork sausages and evaluated as a substitute for commonly used inorganic polyphosphate. Processed pork sausage was prepared with an addition of 0.25, 0.5, and 1.0% (w/w) $\small{L}$-arginine. Quality characteristics of the processed pork sausages were than evaluated in terms of pH, moisture content, emulsion stability and textural properties. The pH of sausage increased with increasing $\small{L}$-arginine concentration. Moisture content of 0.25% $\small{L}$-arginine sausage, emulsion stability of 0.5% $\small{L}$-arginine sausage, and textural properties of 1.0% $\small{L}$-arginine sausage were similar to those of 0.5% polyphosphate sausage, respectively. In terms of sensory evaluation, taste and overall acceptability of 0.5% $\small{L}$-arginine sausage were slightly higher than those of 0.5% polyphosphate sausage and textural properties were reversed. According to sensory score and quality characteristics, $\small{L}$-arginine had a potential as a substitute for inorganic polyphosphate and the optimum concentration of $\small{L}$-arginine was around 0.5%.

Incorporation of phosphate into protein and other nitrogenous compounds in Chlorella cells (Chlorella 세포에서의 $^{32}P$-인산의 단백질 및 다른 질소화합물로의 전환)

  • Lee, Yung-nok
    • Korean Journal of Microbiology
    • /
    • v.5 no.2
    • /
    • pp.61-68
    • /
    • 1967
  • In the process of the incorporation of orthophsphate into protein and other cell constituents, the role of inorganic polyphosphate and RNA-polyphosphate complex and the correlation between them were pursued by analyzing the contents of $^{32}P$ and total P in various fractions of Chlorella cells, which had been uniformly labeled with $^{32}P$ before the inoculation in a normal "cold" medium or P-free medium during the culture. The effects of ionizing radiation and various micronutritional-element deficiencies on the phosphate incorporation into, and biosynthesis of, protein and other introgenus compounds in the cells were also observed. When the uniformly $^{32}P$-labeled algae were grown in a normal "cold" medium the contents of $^{32}$ P in the fractions of protein, DNA and RNA-polyphosphate complex increased, but those in the fraction of acid-insoluble polyphosphate decreased. On the other hand, amount of $^{32}P$in the fraction of RNA was almost unchanged in spite of rapid increase of the total P. In the growing period of $^{32}P$-labeled algae in a P-free medium, amounts of $^{32}P$ in the fractions of DNA, protein and lipid increased, while those in the fractions of RNA-polyphosphate and inorganic polyphosphates decreased. When the algal cells were irradiated with about 70, 000r of gamma-rays before the inoculation in the medium, amounts of phosphate in the fractions of DNA, RNA, nucleotides and protein decreased during the culture, compared with those of the control. However, the phosphate content in the fraction of acid-insoluble polyphosphate of the irradiated cells increased than those of the control. In the growing period of the algae in a Mo-free, medium, amounts of acid-soluble total phosphate and nucleotides of the cells increased, while the amounts of residual protein and RNA decresed compared with those of the normal cells. Amounts of alkali-labile protein and phospholipid of the cells grown in a B-free medium decreased, whereas amount of phosphate in acid-soluble fraction increased compared with the control. In general, the contents of protein and RNA in each microelement deficient cells decreased more or less, compared with those in the normal cells.in the normal cells.

  • PDF