• Title/Summary/Keyword: Inorganic Pollutants

Search Result 98, Processing Time 0.034 seconds

Material Characteristics and Deterioration Assessment for Multi-storied Round shape Stone Pagoda of Unjusa Temple, Hwasun, Korea (화순 운주사 원형다층석탑의 재질특성과 훼손도 평가)

  • Park, Sung Mi;Lee, Myeong Seong;Kim, Jae Hwan;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.1
    • /
    • pp.86-101
    • /
    • 2012
  • The constituting rocks of Multi-storied Round shape stone Pagoda of Unjusa Temple are lithic tuff and rhyolite tuff breaccia which show green or grey and also rock fragment with poor roundness are present in the structure. lithic tuff is composed of feldspar and quartz which are glassy texture and cryptocrystalline and also micro crystalline are scattered. phenocryst quartz and feldspar in the substrate composed of feldspar and opaque minerals are found in rhyolite tuff breaccia. dust, exfoliation, cavity, fracture and crack are observed in all the stone of the pagoda and the result of Infrared Thermography shows partial inter cavities have developed severely which may cause further exfoliation. In addition, a great deal of various grey, green, and yellow brown lichen as well as bryophyte are present at the upper part of eastern and western roof stone located above the third floor. Discolors remarkably shown at stereobate and roof stone are identified as inorganic pollutants such as manganese oxide, iron oxide and iron hydroxide. The stone of the pagoda of the Chemical Index of Alteration (CIA) and the Weathering Potential Index (WPI) are 55.69 and 1.12 respectively and this corresponds to a highly weathered stage. The measured values, average ultrasonic velocity 2,892m/s, coefficient of weathering 0.4k and compressive strength $1,096kg/cm^3$, suggest that the rock strength and durability are weakened.

Development of Wastewater Treatment System by Energy-Saving Photocatalyst Using Combination of Solar Light, UV Lamp and $TiO_2$ (태양광/자외선/이산화티타늄($TiO_2$)을 이용한 에너지 절약형 광촉매 반응 처리시스템 개발)

  • 김현용;양원호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • Pollution purification using titanium dioxide (TiO$_2$) photocatalyst has attracted a great deal of attention with increasing number of relent environmental problems. Currently, the application of TiO$_2$ photocatalyst has been focused on purification and treatment of waste water. However. the use of conventional TiO$_2$ powder photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we herein studied the pilot-scale design to aid in optimization of the energy-saving process for more through development and reactor design by solar light/UV lamp/ TiO$_2$system. In this study, we manufactured the TiO$_2$sol by sol-gel method. According to analysis by XRD, SEM and TEM, characterization of TiO$_2$ sol were nano-size (5-6 nm) and anatase type. Inorganic binder (SiO$_2$) was added to TiO$_2$ lot to be coated for support strongly, and support of ceramic bead was used to lower separation rate that of glass bead The influences were studied of various experimental parameters such as TiO$_2$ quantity, pH, flow rate. additives, pollutants concentration, climate condition and reflection plate by means of reaction time of the main chararteristics of the obtained materials. In water treatment system, variable realtor as solar light/ or UV lamp according to climate condition such as sunny and cloudy days treated the phenol and E-coli(Escherichia coli) effectively.

Removal of Heavy Metals using Aquatic Plant (수생식물을 이용한 중금속 제거에 관한 연구)

  • Lee, Sang-Ho;Lee, In-Koo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.5-10
    • /
    • 2002
  • Pistia stratiotes(Water Lettuce) can be applied to remove inorganic pollutants from the wastewater for the advanced treatment. This study attempts to remove heavy metals from the secondary treated wastewater. Three different initial concentrations of heavy metals were applied as 0.5, 1.0 and 1.5 mg/L for Lead(Pb) and Chromium(Cr(VI)). In addition, the removal efficiency for the mixture of Lead and Chromium was also observed. The removal efficiency of Pb was in the range of 41.0~72.0% for Pb and it was in the range of 25.0~30.0% for Cr(VI) by Pistia stratiotes. The plants placed in static systems were able to remove the heavy metals in a few days of exposure. However, it was observed that the heavy metals affected produce phytotoxic effects on plants resulting in inhibition of chlorophyl synthesis, decrease in biomass production, and finally plant necrosis. The removal efficiencies of Pb and Cr(VI) by Pistia stratiotes were increased with plant growth.

  • PDF

Application of stoichiometric method in the assessment of groundwater chemistry in a coastal region having complex contaminant sources

  • Rajmohan Natarajan;Kim, Kang-Joo;Hwang, Gab-Soo;Kim, Hyun-Jung;Cho, Min-Joe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.499-502
    • /
    • 2004
  • Groundwater chemistry in a coastal region having complex contaminant sources was investigated. Water analysis data for 197 groundwater samples collected from the uniformly distributed sixty-six wells were used. Chemical analysis rand results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes of pollutants. Due to the complexity of groundwater chemistry, Results illustrate that thirty five percent of the wells do not fit for drinking based on nitrate and chloride concentration in the study area. the samples were classified into four groups based on Cl and NO$_3$ concentrations and the processes controlling water chemistry were evaluated based on the reaction stoichiometry. The results explained the importance of mineral weathering, anthropogenic activities (nitrification and oxidation of organic matters), and Cl-salt inputs (seawater, deicer, NaCl, etc.) on groundwater chemistry. It was revealed that mineral dissolution is the major process controlling the water chemistry of the low Cl and NO$_3$ group (Group 1). Groundwaters high in NO$_3$ (Groups 2 and 4) are acidic in nature, and their chemistry is largely influenced by nitrification, oxidation of organic matters and mineral dissolution. In the case of chloride rich waters (Group 3), groundwater chemistry is highly influenced by mineral weathering and seawater intrusion associated with cation-exchange reactions.

  • PDF

Characteristics of Nonpoint Source Pollution from a Reclaimed Rice Paddy Field (계화 간척지구 강우 유출수의 비점오염원 유출특성에 관한 연구)

  • Lu, Weiwei;Yi, Qitao;Yu, Jianghua;Kim, Young-Chul
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.9-19
    • /
    • 2009
  • This research addressed nonpoint source (NPS) pollution characteristics in a reclaimed rice paddy field. The paddy has an area of around 2,998 ha and is divided as two sub-watersheds, whose areas are 1,181 ha and 1,817 ha, respectively. Monitoring of hydrologic runoff and NPS pollution was undertaken during three-month period from June to August, 2008. Totally, three sampling trips were made when rainfall depth were 66.0 mm, 23.5 mm, and 23.0 mm, respectively. Generally pollution load increased with the heavier cultivation activity in Korea. Exported pollutants from the rice paddy, including TSS, TN and TP, have same levels as forest discharge. Organic nitrogen is main pattern but it mainly exists in the forms of dissolved organic nitrogen (DON). For phosphorus, dissolved inorganic phosphorus (DIP) takes the main part although part of them is associated with fine particles. This is different compared with other watersheds, where particles-associated phosphorus is the main form.

  • PDF

Physical, Chemical and Optical Properties of an Asian Dust and Haze Episodes Observed at Seoul in 2010 (2010년 서울에서 관측한 황사와 연무사례의 물리, 화학, 광학적 특성비교)

  • Song, Seungjoo;Kim, Jeong Eun;Lim, Eunha;Cha, Joo-Wan;Kim, Jhoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.2
    • /
    • pp.131-142
    • /
    • 2015
  • This study investigated physicochemical and optical characteristics for three episodes of Asian dust, stagnant haze and long-range transport haze and for one clean day. $PM_{10}$ mass concentration during Asian dust and two haze days was increased by 2~9 times compared to that of clean episode. During Asian dust episode, coarse particle concentration was increased and the mass concentration of calcium in a coarse mode ($1.8{\sim}10{\mu}m$) was $5.4{\mu}g/m^3$ which was 7 times higher than that of clean episode. The calcium was presented as a form of $CaCO_3$ in a coarse mode. During the two haze episodes, fine particle (< $1.8{\mu}m$) concentration was increased and secondary inorganic pollutants such as sulfate, ammonium and nitrate composed of 90% of the total ions. $(NH_4)_2SO_4$ and $NH_4NO_3$ were dominant in a fine mode for stagnant haze episode. But they were the most dominant form in both fine mode and coarse mode for long-range transport haze episode. According to the optical properties for each episode (Asian dust, stagnant haze and long-range transport haze) were classified as dust, black carbon and mixture, respectively.

Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis

  • Gehrke, Peter;Tabellion, Astrid;Fischer, Carsten
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.2
    • /
    • pp.151-159
    • /
    • 2015
  • PURPOSE. To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. MATERIALS AND METHODS. A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non- quantitatively. RESULTS. All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. CONCLUSION. The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented.

Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment (Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가)

  • Jo, Jae Hyun;Yoon, Seong-Eun;Kim, Jae-Moon;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater

  • A. Ahsan;I.K. Erabee;F.B. Nazrul;M. Imteaz;M.M. El-Sergany;S. Shams;Md. Shafiquzzaman
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.163-173
    • /
    • 2023
  • The presence of high amounts of organic and inorganic contaminants in textile wastewater is a major environmental concern. Therefore, the treatment of textile wastewater is an urgent issue to save the aquatic environment. The disposal of large quantities of untreated textile wastewater into inland water bodies can cause serious water pollution. In this study, synthetic dye wastewater samples were prepared using orange dye in the laboratory. The synthetic samples were then treated by a batch adsorption process using the prepared activated carbon (AC) from date pits. The wastewater parameters studied were the pH, total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC) and salinity. The activated adsorption process showed that the maximum removal efficiencies of electric conductivity (EC), salinity, TDS and TSS were 65%, 92%, 89% and 90%, respectively. The removal efficiencies were proportional to the increase in contact time (30-120 min) and AC adsorbent dose (1, 3 and 5 g/L). The adsorption profile indicates that 5 g/L of adsorbent delivers better results for TDS, EC, TSS and salinity at contact time of 120 min. The adsorption characteristics are better suited to the pseudo-second-order kinetic model than to the pseudo-first-order kinetic model. The Langmuir and Freundlich isotherms were well suited for describing the adsorption or contact behavior of EC and TSS within the studied system.

Comparison of Performances of Forward Osmosis and Membrane Distillation Processes for Shale Gas Plant Water Treatment (셰일가스 플랜트 용수 처리를 위한 정삼투(FO)와 막증발(MD) 공정의 성능 비교)

  • Koo, Jaewuk;Lee, Sangho;Shin, Yonghyun;Yun, Taekgeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • As non-conventional oil resources such as shale gas have been widely developed, proper treatment of flowback and produced water is becoming important. However, application of conventional water treatment techniques is limited due to high concentration of pollutants such as oil and grease, organics, harmful chemicals, and inorganic ions. In this study, we examined the feasibility of using forward osmosis (FO) and air gap membrane distillation (AGMD) as novel treatment options for shale gas wastewater. Laboratory-scale FO and MD devices were fabricated and used for the experiments. Results showed that FO could be used to treat the synthetic wastewater. Using 5 M NaCl as the draw solution, the flux was approximately $6L/m^2-hr$ during the treatment of low range wastewater (TDS: 66,000 mg/L). Nevertheless, AGMD was more effective to treat high range wastewater (Total Dissolved Solid: 260,000 mg/L) than FO.