• Title/Summary/Keyword: Inoculum

Search Result 679, Processing Time 0.031 seconds

Effect of Mycorrhizal Treatment on Growth of Acacia spp. On Sandy BRIS Soils in Peninsular Malaysia

  • Lee, Su See;Mansor, Patahayah;Koter, Rosdi;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.516-523
    • /
    • 2006
  • Marginal soils such as BRlS (Beach Ridges Interspersed with Swales) soils and ex-tin mining land make up approximately 0.5 million ha or about 2% of Malaysia's land area. In the coastal areas of the east coast of Peninsular Malaysia impoverished sandy BRIS dominates the landscape with most lying idle as there is no national management plan for their utilization. A field study was carried out to see whether mycorrhizal application had any effect on the growth of three exotic Acacia spp., i.e. Acacia auriculiformis, A. mangium and Acacia hybrid (A. auriculiformis ${\times}$ A. mangium) on BRIS soils. Two types of mycorrhizal inoculum, namely, a commercially available arbuscular mycorrhizal inoculum marketed as $MycoGold^{TM}$ and an indigenous ectomycorrhizal Tomentella sp. inoculum were tested. In the initial six months, height growth of all three tree species inoculated with the arbuscular mycorrhizal inoculum was significantly improved compared to the ectomycorrhizal inoculated and uninoculated control plants. The mycorrhizal effect was not evident thereafter and repeated application of the arbuscular mycorrhizal inoculum may be necessary for continued growth enhancement. Of the three species, A. mangium had the highest relative height growth rate over the 24 months on BRlS soils.

Effects of Initial Inoculum Size, Liquid Volume and Medium Feeding Strategy on Panax ginseng Hairy Roots Growth

  • Jeong, Gwi-Taek;Park, Don-Hui;Hwang, Baek
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.250-253
    • /
    • 2000
  • We researched effects of growth on initial inoculum size, liquid volume, and medium feeding rate etc. Cell suspension inoculated at low cell concentrations showed a typical growth reduction, whereas root cultures showed an improvement in growth. In this paper, Hairy roots showed high growth rate at 0.4 % inoculum size and 100 mL liquid volume in 250 mL flask cultures.

  • PDF

Control Effect of Stenotrophomonas maltophilia BW-13 strain to the lettuce Bottom rot

  • Park, Jong-Young;Kim, Hyun-Ju;Bak, Joung-Woo;Lee, Kwang-Youll;Jun, Ok-Ju;Lee, Jin-Woo;Jung, Soon-Je;Moon, Byung-Ju
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.103.1-103
    • /
    • 2003
  • An antagonistic bacteria, Stenotrophomonas maitophilia BW-13 strain which was effectively inhibited mycerial growth of Bottom rot pathogen, Rhizoctonia solani PY-1 strain was isolated from the rhizosphere of the lettuce in Uiryeong-Gun, Gyeongsangnam-Do from 2002 to 2003. For the biological control, the most suitable inoculum and its density of pathogen, PY-1 strain ware tested prior biological control test, For the pathogenicity test, A inoculum (wheat bran)sawdust+rice bran+PDB) showing disease incidence of 100% was selected as the most suitable inoculum, which showed more effective than B inoculum (sawdust+rice bran+DW) and mycelial disc. also, In selection of the amount of inoculum (40g, 50g, 60g, 70g, 80g), most suitable amount of inoculum of pathogen determined as 40g showing disease incidence of 80%. For the selection of effective microorganism to control bottom rot on lettuce, about 200 isolates were isolated from the diseased soil and lettuce leaves, and examined their antifungal activity to the pathogen on PDA. As the pots assay, BW-13 strain showed the highest control value as 90%, and followed by R-13 and R-26 strain as 80% and 60%, respectively. Selected BW-13 isolates identified as 5. maltophilia (GeneBank accession no. AJ293473.1, 99%) by 16S rRNA sequencing. This is the first report on the biological control using by S. maltophilia to the bottom rot pathogen, Rhizoctonia solani PY-1 strain.

  • PDF

Biocontrol Efficacies of Bacillus Species Against Cylindrocarpon destructans Causing Ginseng Root Rot

  • Jang, Ye-Lim;Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.333-341
    • /
    • 2011
  • Two antifungal bacteria were selected from forest soils during the screening of microorganisms antagonistic to Cylindrocarpon destructans, a cause of ginseng root rot. The antifungal bacteria were identified as Bacillus subtilis (I4) and B. amyloliquefaciens (yD16) based on physiological and cultural characteristics, the Biolog program, and 16S rRNA gene sequencing analyses. Antagonistic activity of both bacterial isolates to C. destructans increased with increasing temperature. More rapid starch hydrolytic activity of the bacteria was seen on starch agar at higher temperatures than at lower temperatures, and in the higher density inoculum treatment than in the lower density inoculum treatment. The bacterial isolates failed to colonize ginseng root the root tissues inoculated with the bacteria alone at an inoculum density of $1{\times}10^6$ cfu/ml, but succeeded in colonizing the root tissues co-inoculated with the bacteria and C. destructans. Scanning electron microscopy showed that the pathogen was damaged by the low-density inoculum treatment with the bacterial isolates as much as by the high-density inoculum treatment. Both bacterial isolates were more effective in reducing root rot when they were treated at a concentration of $1{\times}10^6$ cfu/ml than at $1{\times}10^8$ cfu/ml. Also, only the former treatment induced prominent wound periderm formation, related to structural defense against pathogen infection. The results suggest that the bacterial antagonists may have high potential as biocontrol agents against ginseng root rot at relatively low-inoculum concentrations.

The Quality Characteristics of Chunggujang Prepared by Bacillus Subtilis NRLSI IV on the Different Inoculum Levels and Fermentation Times (Bacillus Subtilis NRLSI IV로 제조한 청국장의 접종포자농도와 발효시간에 따른 품질 특성)

  • Kim Kyung-Mi;Kim Haeng-Ran;Park Hong-Ju
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.3
    • /
    • pp.123-131
    • /
    • 2006
  • To compare the quality characteristics, chunggugjang was prepared with Bacillus subtilis NRLSI IV on the different inoculum levels$(10^2,\;10^4,\;10^6,\;and\;10^8 CFU/ml)$ and fermentation times(0, 12, 24, 36, and 48 hours). Although significant change in total nitrogen content was not found, the content of amino type, soluble and ammonia type nitrogen was generally increased according to the increase in fermentation time. Decomposition rate of nitrogen was also increased by fermentation time and nitrogen solubility was the highest value(62-75.9%) at 48 hour fermentation. In results of color changes, it was found that L and a value were decreased but there was no significant changes in b value as fermentation time was increased. In chunggugjang made with long fermentation time, hardness was decreased and relative viscosity of viscous substance was gradually decreased after little increase at initial fermentation time. The effect of inoculum level on hardness and relative viscosity were similar to that of fermentation time, i.e. the decrease of these at high inoculum level. In activity of V-GTP, 36 hour incubation could produce the highest value whereas no effect of inoculum level was found during fermentation except at 48 hour. In chunggugjang made with $10^2CFU/mL$ of Bacillus subtilis NRLSI IV, the content of glucose, sucrose, raffinose and stachyose was dramatically decreased at initial fermentation time and that of phytic acid, oxalic acid, citric acid, tartaric acid and malic acid was also decreased during fermentation, although the increase in acetic acid was found.

  • PDF

Characteristics of Indigenous Rhizobium to Korean Soils -I. Symbiotic Potentials of Bradyrhizobium japonicum Populations and Their Colony Morphological Characteristics in Yeongnam Soils (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구(硏究) -I. 영남지역(嶺南地域) 토착(土着) 대두근류균(大豆根瘤菌)의 접종효과(接種效果)와 취락형태적(聚落形態的) 분포특성(分布特性))

  • Kang, Ui-Gum;Somasegaran, Padma;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.60-66
    • /
    • 1990
  • Soybean [Glycin max (L.)] cv. Jangbaekkong was inoculated with 5 cultivated- and 5 uncultivated upland soils, in Yeongnam area, as soil inoculum and NifTAL peat inoculum as standard for soil inoculum potentials by Bradyrhizobium japonicum. 120 Bradyrhizobium japonicum isolates out of the soil populations were scored of three colony morphologies, designed "Dry", "Wet", and "Dry/Wet", and symbiotic effectiveness between "Dry" and "Wet" was compared. The results obtained were summarized as follows: 1. Indigenous populations of B. japonicum were above $10^4cells/g$. soil at the cultivated upland soils but were a few at the uncultivated upland soils except a colluvivum, orchard previously, in Yeongnam area. 2. Inoculum potentials of the cultivated upland soils were higher than the NifTAL inoculum and generally, nodule mass compensated nodule number for symbiotic effectiveness of soil populations. 3. Colony morphologies of soil populations showed the different proportions of "Dry" and "Wet" so that "Dry" types were dominant at the cultivated upland soils while "Wet" types at the uncultivated upland soils. 4. "Dry" colony morphology significantly exhibited higher symbiotic effectiveness than "Wet" types in nodule fresh weight, shoot dry weight, and shoot dry weight/nodule fresh weight. Therefore, as long as soil inoculum potentials, the growth of soybean at the cultivated upland soils could presumedly be affected by soil populations of Bradyrhizobium japonicum of "Dry" colony morphology.

  • PDF

Occurrence of Bottom Rot of Crisphead Lettuce Caused by Rhizoctonia solani and Its Pathogenicity (Rhizoctonia soiani에 의한 결구상추 밑둥썩음병(Bottom rot)의 발생과 병원성)

  • 김현주;박종영;백정우;이진우;정순재;문병주
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.689-695
    • /
    • 2004
  • This study was investigate the occurrence of bottom rot caused by Rhizoctonia solani at the crisphead lettuce fields in Uiryeong-gun, Gyeongsangnam-do from November to December in 2003. Incidence of bottom rot on crisphead lettuce was up to 5.3% at the six plastic houses. A total of 30 isolates of R. solani were obtained from diseased leaves of plants and were tested by artificial inoculation to the host. Among them, PY-1 isolate was selected showing highly virulent on the whole plant and was identified as R. solani AG1 (IB) based on the anastomosis test, morphological and cultural characteristics. Symptoms of bottom rot by PY-1 isolate produced small dark brown, depressed and elliptical spots on the lower part of leaves in the early stage as same as at the fields, were enlarged onto the upper part of leaves later, and the infected plant wilted and ultimately died in the end. For the pathogenicity test, triturated mycelia-inoculum (A$_{550}$=1.0) of PY-1 isolate was selected the most effective inoculum showing disease incidence of 51.1% for the mycelial inoculation at pot assay. Otherwise, WSRP media-inoculum (wheat brane : sawdust : rice brane : PDB media=30 g : 10 g : 10 g : 100 ml, w/w/w/v) of PY-1 isolate was effectual inoculum showing disease incidence of 61.6% for soil inoculation at the plastic house. Also, in selection of density and amount of inoculum, most suitable density of triturated mycelia-inoculum and amount of WSRP media- inoculum were determined as $A_{550}$=1.0 and 40 ml, respectively. This is the first report on the pathogenicity test using by WSRP media-inoculum of R. solani PY-1 isolate for the bottom rot of crisphead lettuce.

Ecology of Disease Outbreak of Circular Leaf Spot of Persimmon and Inoculum Dynamics of Mycosphaerella nawae (감나무 둥근무늬낙엽병의 발생과 병원균(Mycosphaerella nawae)의 전염원 동태)

  • Kwon, Jin-Hyeuk;Park, Chang-Seuk
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.209-216
    • /
    • 2004
  • The circular leaf spot of persimmon is occurred almost every place where persimmon is cultivated, especially the disease outbreak severely in southern part of Korea. The disease reveals unusually long incubation period after pathogen invade into leaf tissue and no practical control measure is available once the symptom has appeared. Most of the farmers just follow the suggested spray schedules calculated on the basis of weather condition of ordinary years. Therefore the damages due to circular leaf spot greatly differ year after year. In this article, we tried to describe and summarized the investigation on the circular leaf spot pathogen, Mycosphaerella nawae, related to disease outbreak such as overwintering of pathogen, inoculum formation and spread, incubation period after infection, and secondary inoculum. With the summary of these results, we suggest the disease cycle of circular leaf spot of persimmon. The pathogen overwinters in diseased leaves as mycelial form or pseudoperithecial premodium. The pseudoperitheria become matured in spring as the temperature raise and forms asci and ascospores. The maturation of pseudoperithecia are closely related to the temperatures during March and early April. The ascospores completely mature in early May and the ascospores released when the pseudoperithecia absorbed enough moisture after rainfall. The release of ascospores are diverse greatly with the variation of maturity of pseudoperithecia. Generally the spore start to release from middle of May to early of July. Duration of ascospore release is depend on the weather condition of particular year, especially amount and number of precipitation. The ascospores produced from pseudoperithecia is known to the only inoculum for circular leaf spot disease. But according to the results obtained from our investigations, the conidia formed on the lesions which incited by natural infection. This conidia are infectious to persimmon leaves and formed identical symptom as natural infection. The time of producing secondary inoculum of circular leaf spot of persimmon is considered too late to develop new disease. Generally the importance of secondary inoculum is low but the conidia produced in early September are competent to develop new disease and new infection also significantly affect to harvest of persimmon. The importance of circular leaf spot disease is recognized well to farmers. The approaches to control of the disease should be initiated on the basis of the knowledges of inoculum dynamics and ecology of disease development. The forecasting system for circular leaf spot is need to be developed.

Environmental Factors Affecting Ascospore Release of Mcyosphaerella nawae, the Causal Organism of the Spotted Leaf Casting of Persimmon (감나무 둥근무늬낙엽병균(Mycosphaerella nawae)의 자낭포자 비산에 영향을 주는 환경요인)

  • 권진혁;강수웅;정부근;박창석
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.344-347
    • /
    • 1995
  • Factors affecting on the ascospore release of Mycosphaerella nawae, the causal organism of persimmon leaf casting disease, were investigated. The ascospore release of the pathogen occurred following the precipitation of rain. The ascospore release started from the beginning of raining, reached maximum at 2 hours after the precipitation of rain, and then decreased abruptly. When the inoculum source (a file of infected leaves) was submerged in water to imitate raining conditions, 92.5% of the total ascospores were released within 1 hour after submerging, 5.8% were after 2 hours, 1.4% were after 4 hours, 0.1% were after 8 hours, and none detected after 10 hours. The inoculum source overwintered in the field released ascospores much more and earlier than the inoculum source kept in the greenhouse. The first ascospore release was about 10 days earlier, and the amount of the total liberated spores was 3∼4 times higher in the field inoculum source than the greenhouse nioculum source. The early defoliated leaves (in early October) in the previous year produced ascospores twice more than the late defoliated leaves (in early November) produced.

  • PDF

Characteristics of Municipal Sewage Sludge Affecting the Biodegradation of a Plastic Material Under Aerobic Condition (호기적 조건에서 플라스틱 생분해에 영향을 미치는 도시 하수 오니의 성질)

  • Seo, In-Sun;Lee, Myung-Cheon;Kim, Byung-Hong;Shin, Pyong-Kyun
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.436-442
    • /
    • 1994
  • The characteristics of activated sludge affecting the biodegradation of plastic materials under aerobic condition were studied using cellophane film as a model system. The activated sludges of site 3, which treat a mixture of domestic sewage and supernatant of septic tank, obtained from December 1993 to April 1994 showed similar biodegradation activities. Biodegradations for 28 days reached around 80%. Viable cell number of inoculums maintained at a level of 10$^{6}$~10$^{7}$ /ml. In this range, viable cell number showed no relationship with biodegradation activities. The activa- ted sludges of site 2, which treat a mixture of domestic sewage and anaerobic digest of nightsoil, obtained four times from April 1993 to April 1994 showed very different biodegradation activities ranged from 20% to 80% for 28 days. Inoculum size affects biodegradation significantly. One percent inoculum showed the best biodegradation among the inoculum sizes of 0.1, 1.0 and 10%. Ten percent inoculum revealed inhibitory effects on the biodegradation activity which can be greatly reduced by centrifugation and filtration. Filtration was better than centrifugation in reducing inhibitory effects.

  • PDF