• Title/Summary/Keyword: Inner steel lining

Search Result 4, Processing Time 0.021 seconds

Deformation of segment lining and behavior characteristics of inner steel lining under external loads (외부 하중에 따른 세그먼트 라이닝 변형과 보강용 내부 강재 라이닝의 거동 특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.255-280
    • /
    • 2024
  • If there are concerns about the stability of segment lining due to section deficiency or large deformation in shield TBM tunnel, reinforcement can be done through ground grouting outside the tunnel or by using steel plate reinforcement, ring beam reinforcement, or inner double layer lining inside the tunnel. Traditional analyses of shield TBM tunnels have been conducted using a continuum method that does not consider the segmented nature of segment lining. This study investigates the reinforcement mechanism for double layer reinforced sections with internal steel linings. By improving the modeling of segment lining, this study applies Break-joint mode (BJM), which considers the segmented characteristics of segment lining, to analyze the deformation characteristics of double layer reinforced sections. The results indicate that the existing concrete segment lining functioned similarly to ground reinforcement around the tunnel, rather than distribution the load. In general, both the BJM model considering the segmentation of segment lining and the continuum rigid method were similar deformation shapes and stress distributions of the lining under load. However, in terms of deformation, when the load strength exceeded the threshold, the deformation patterns of the two models differed.

Simplified nonlinear simulation for composite segmental lining of rectangular shield tunnels

  • Zhao, Huiling;Liu, Xian;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.513-522
    • /
    • 2022
  • Steel-concrete composite segments replacing the conventional reinforced concrete segments can provide the rectangular shield tunnel superiorities on bearing capacity, ductility and economy. A simplified model with high-efficiency on computation is proposed for investigating the nonlinear response of the rectangular tunnel lining composed of composite segments. The simulation model is developed by an assembly of nonlinear fiber beam elements and spring elements to express the transfer mechanism of forces through components of composite segments, and radial joints. The simulation is conducted with the considerations of material nonlinearity and geometric nonlinearity associated with the whole loading process. The validity of the model is evaluated through comparison of the proposed nonlinear simulation with results obtained from the full-scale test of the segmental tunnel lining. Furthermore, a parameter study is conducted by means of the simplified model. The results show that the stiffness of the radial joint at haunch of the ling and the thickness of inner steel plate of segments have remarkable influence on the behaviour of the lining.

Seismic performance of the thin-walled square CFST columns with lining steel tubes

  • Wang, Xuanding;Liu, Jiepeng;Wang, Xian-Tie;Cheng, Guozhong;Ding, Yan
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.423-436
    • /
    • 2022
  • This paper proposes an innovative thin-walled square concrete filled steel tubular (CFST) column with an octagonal/circular lining steel tube, in which the outer steel tube and the inner liner are fabricated independently of each other and connected by slot-weld or self-tapping screw connections. Twelve thin-walled square CFST columns were tested under quasi-static loading, considering the parameters of liner type, connection type between the square tube and liner, yield strength of steel tube, and the axial load ratio. The seismic performance of the thin-walled square CFST columns is effectively improved by the octagonal and circular liners, and all the liner-stiffened specimens showed an excellent ductile behavior with the ultimate draft ratios being much larger than 1/50 and the ductility coefficients being generally higher than 4.0. The energy dissipation abilities of the specimens with circular liners and self-tapping screw connections were superior to those with octagonal liner and slot-weld connections. Based on the test results, both the finite element (FE) and simplified theoretical models were established, considering the post-buckling strength of the thin-walled square steel tube and the confinement effect of the liners, and the proposed models well predicted the hysteretic behavior of the liner-stiffened specimens.

Development of Composite Fly Ash Pipe (비회 운송용 유리섬유 복합관 개발)

  • Jeong, Gyu-Sang;Won, Sam-Yong;Moon, Jin-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.33-36
    • /
    • 2007
  • The majority of fly ash pipes in thermal power stations use steel pipes. This makes frequent replacement inevitable due to severe abrasion near the hot and curved section of pipes. Recently, there have been efforts to prevent this abrasion with lining techniques using ceramic or basalt on the inner wall of the pipe. This study uses composite and anti-wear material to maximize the anti-abrasion effects on the hot section of the pipe. The thickness of the abrasion layer was determined by the abrasion ratio of material found through the experiment; the thickness of the reinforcement layer was determined by micromechanics. Experiments were conducted on epoxy resins to test for heat and abrasion. Anti-abrasion test using particle impingement was intended to recreate realistic conditions when abrasion occurs within the hot section of an actual pipe. This study analyzes the abrasion ratio obtained from both the specimen experiment and from on-site measurement and provides evidence that a combination of composites and anti-wear agent can be used to create a fly ash pipe that is lower in costs and higher in quality than what is used currently.

  • PDF