• Title/Summary/Keyword: Inner eye diseases

Search Result 5, Processing Time 0.02 seconds

The Retrospective Study of 463 Patients who had Funduscopy Examination at Korean Medicine Ophthalmology (한방 안과에 내원하여 안저 검사를 시행한 환자 463명에 대한 후향적 연구 보고)

  • Lee, Ma-Eum;Jeong, Mi-Rae;Kim, Chul-Yun;Kwon, Kang;Seo, Hyung-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.33 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • Objectives : The purpose of this study was to analyze and report status of Korean Medicine Ophthalmology patients who did funduscopy examination. Through this, we hope that the development of our diagnosis and treatment. Methods : From June 1, 2010 to May 31, 2019, Based on the electronic medical records of patients who had funduscopy examination at Korean Medicine Ophthalmology, Busan University Korean Medicine Hospital, the gender, age, visiting motives and paths, diagnosis, examination number of years, other eye examinations and treatments method were summarized and analyzed. Results : 463 patients were able to check the electronic medical records. They were 283 females and 180 males. The mean age of the patients was 51.5 years and elderly patients who 50s and 60s were 49.3% of whole patients. The most common motives for Korean Medicine Ophthalmology visitation was 'combination treatment with other department in Korean Medicine Hospital'. Outer eye diseases were 283 cases, inner eye diseases were 198 cases. Dry eye syndrome, asthenopia, visual discomfort, conjunctivitis, and eye discomfort were most common in the outer eye diseases. Cataracts, Vitreous floater, Macular Degeneration, Glaucoma and Ocular Pain were most common in the inner eye disease. The most common parts of outer eye diseases were Conjunctival, lacrimal gland, paralytic, corneal, eyelid and front uveal, scleral disease and then in inner eye diseases parts, Retinal, lens, vitreous, glaucoma, optic nerve, behind uveal, choroid disease were most common. The number of funduscopy examination was ups and downs. Herbal medicine was the most common used. Conclusions : The funduscopy examination is essential for diagnosis and treatment of eye disease. We hope that the use of fundus examination and other ophthalmologic examination will be expanded soon in Korean Medicine Ophthalmology.

Thickness of the Macula, Retinal Nerve Fiber Layer, and Ganglion Cell-inner Plexiform Layer in the Macular Hole: The Repeatability Study of Spectral-domain Optical Coherence Tomography

  • Lee, Woo Hyuk;Jo, Young Joon;Kim, Jung Yeul
    • Korean Journal of Ophthalmology
    • /
    • v.32 no.6
    • /
    • pp.506-516
    • /
    • 2018
  • Purpose: We measured the thicknesses of the ganglion cell and inner plexiform layer (GCIPL), the macula, and the retinal nerve fiber layer (RNFL) using spectral-domain optical coherence tomography in patients with idiopathic macula holes to analyze the repeatability of these measurements and compare them with those of the fellow eye. Methods: We evaluated 85 patients who visited our retinal clinic. The patients were divided into two groups according to their macular hole size: group A had a size of $<400{\mu}m$, while group B had a size of ${\geq}400{\mu}m$. Repeatability was determined by comparing the thicknesses of the GCIPL, macula, and RNFL with those of the normal fellow eye. Results: The average central macular thickness in patients with macular holes was significantly thicker than that in the normal fellow eye ($343.8{\pm}78.6$ vs. $252.6{\pm}62.3{\mu}m$, p < 0.001). The average thickness of the GCIPL in patients with macular holes was significantly thinner than that in the normal fellow eye ($56.1{\pm}23.4$ vs. $77.1{\pm}12.8{\mu}m$, p < 0.001). There was no significant difference in the average RNFL thickness between eyes with macular holes and fellow eyes ($92.4{\pm}10.0$ vs. $95.5{\pm}10.7{\mu}m$, p = 0.070). There were also no significant differences in the thicknesses of the GCIPL and RNFL among the two groups (p = 0.786 and p = 0.516). The intraclass correlation coefficients for the macula and RNFL were 0.994 and 0.974, respectively, in patients with macular holes, while that for the GCIPL was 0.700. Conclusions: Macular contour change with macular hole results in low repeatability and a tendency of thinner measurement regarding GCIPL thickness determined via spectral-domain optical coherence tomography. The impact of changes in the macular shape caused by macular holes should be taken into consideration when measuring the GCIPL thickness in patients with various eye diseases such as glaucoma and in those with neuro-ophthalmic disorders.

Upper eyelid platinum weight placement for the treatment of paralytic lagophthalmos: A new plane between the inner septum and the levator aponeurosis

  • Oh, Tae Suk;Min, Kyunghyun;Song, Sin Young;Choi, Jong Woo;Koh, Kyung Suk
    • Archives of Plastic Surgery
    • /
    • v.45 no.3
    • /
    • pp.222-228
    • /
    • 2018
  • Background The most common surgical treatment for paralytic lagophthalmos is the placement of a weight implant in the upper eyelid; however, this technique confers the risks of implant visibility, implant extrusion, and entropion. In this study, we present a new technique of placing platinum weight implants between the levator aponeurosis and inner septum to decrease such complications. Methods A total of 37 patients with paralytic lagophthalmos were treated between March 2014 and January 2017 with platinum weight placement (mean follow-up, 520.1 days). After dissecting through the orbicularis oculi muscle, the tarsal plate and levator aponeurosis were exposed. The platinum weights (1.0-1.4 g) were fixed to the upper margin of the tarsal plate and placed underneath the orbital septum. Results Five patients could partially close their eye after surgery. The average distance between the upper eyelid and the lower eyelid when the eyes were closed was 1.12 mm. The rest of the patients were able to close their eye completely. Three patients patient developed allergic conjunctivitis after platinum weight insertion, which was managed with medication. None of the patients complained of discomfort in the upper eyelid after surgery. Visibility or extrusion of the implant were observed in three patients. Conclusions Postseptal weight placement is a safe and reproducible method in both primary and secondary upper eyelid surgery for patients with paralytic lagophthalmos. It is a feasible method for preventing implant visibility, implant exposure, and entropion. Moreover, platinum is a better implant material than gold because of its smaller size and greater thinness.

A Study of The Medical Classics in the '$\bar{A}yurveda$' ('아유르베다'($\bar{A}yurveda$)의 의경(醫經)에 관한 연구)

  • Kim, Ki-Wook;Park, Hyun-Kuk;Seo, Ji-Young
    • Journal of Korean Medical classics
    • /
    • v.20 no.4
    • /
    • pp.91-117
    • /
    • 2007
  • Through a simple study of the medical classics in the '$\bar{A}yurveda$', we have summarized them as follows. 1) Traditional Indian medicine started in the Ganges river area at about 1500 B. C. E. and traces of medical science can be found in the "Rigveda" and "Atharvaveda". 2) The "Charaka" and "$Su\acute{s}hruta$(妙聞集)", ancient texts from India, are not the work of one person, but the result of the work and errors of different doctors and philosophers. Due to the lack of historical records, the time of Charaka or $Su\acute{s}hruta$(妙聞)s' lives are not exactly known. So the completion of the "Charaka" is estimated at 1st${\sim}$2nd century C. E. in northwestern India, and the "$Su\acute{s}hruta$" is estimated to have been completed in 3rd${\sim}$4th century C. E. in central India. Also, the "Charaka" contains details on internal medicine, while the "$Su\acute{s}hruta$" contains more details on surgery by comparison. 3) '$V\bar{a}gbhata$', one of the revered Vriddha Trayi(triad of the ancients, 三醫聖) of the '$\bar{A}yurveda$', lived and worked in about the 7th century and wrote the "$A\d{s}\d{t}\bar{a}nga$ $A\d{s}\d{t}\bar{a}nga$ $h\d{r}daya$ $sa\d{m}hit\bar{a}$ $samhit\bar{a}$(八支集)" and "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$(八心集)", where he tried to compromise and unify the "Charaka" and "$Su\acute{s}hruta$". The "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$" was translated into Tibetan and Arabic at about the 8th${\sim}$9th century, and if we generalize the medicinal plants recorded in each the "Charaka", "$Su\acute{s}hruta$" and the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$", there are 240, 370, 240 types each. 4) The 'Madhava' focused on one of the subjects of Indian medicine, '$Nid\bar{a}na$' ie meaning "the cause of diseases(病因論)", and in one of the copies found by Bower in 4th century C. E. we can see that it uses prescriptions from the "BuHaLaJi(布哈拉集)", "Charaka", "$Su\acute{s}hruta$". 5) According to the "Charaka", there were 8 branches of ancient medicine in India : treatment of the body(kayacikitsa), special surgery(salakya), removal of alien substances(salyapahartka), treatment of poison or mis-combined medicines(visagaravairodhikaprasamana), the study of ghosts(bhutavidya), pediatrics(kaumarabhrtya), perennial youth and long life(rasayana), and the strengthening of the essence of the body(vajikarana). 6) The '$\bar{A}yurveda$', which originated from ancient experience, was recorded in Sanskrit, which was a theorization of knowledge, and also was written in verses to make memorizing easy, and made medicine the exclusive possession of the Brahmin. The first annotations were 1060 for the "Charaka", 1200 for the "$Su\acute{s}hruta$", 1150 for the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$", and 1100 for the "$Nid\bar{a}na$", The use of various mineral medicines in the "Charaka" or the use of mercury as internal medicine in the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$", and the palpation of the pulse for diagnosing in the '$\bar{A}yurveda$' and 'XiZhang(西藏)' medicine are similar to TCM's pulse diagnostics. The coexistence with Arabian 'Unani' medicine, compromise with western medicine and the reactionism trend restored the '$\bar{A}yurveda$' today. 7) The "Charaka" is a book inclined to internal medicine that investigates the origin of human disease which used the dualism of the 'Samkhya', the natural philosophy of the 'Vaisesika' and the logic of the 'Nyaya' in medical theories, and its structure has 16 syllables per line, 2 lines per poem and is recorded in poetry and prose. Also, the "Charaka" can be summarized into the introduction, cause, judgement, body, sensory organs, treatment, pharmaceuticals, and end, and can be seen as a work that strongly reflects the moral code of Brahmin and Aryans. 8) In extracting bloody pus, the "Charaka" introduces a 'sharp tool' bloodletting treatment, while the "$Su\scute{s}hruta$" introduces many surgical methods such as the use of gourd dippers, horns, sucking the blood with leeches. Also the "$Su\acute{s}hruta$" has 19 chapters specializing in ophthalmology, and shows 76 types of eye diseases and their treatments. 9) Since anatomy did not develop in Indian medicine, the inner structure of the human body was not well known. The only exception is 'GuXiangXue(骨相學)' which developed from 'Atharvaveda' times and the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$". In the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$"'s 'ShenTiLun(身體論)' there is a thorough listing of the development of a child from pregnancy to birth. The '$\bar{A}yurveda$' is not just an ancient traditional medical system but is being called alternative medicine in the west because of its ability to supplement western medicine and, as its effects are being proved scientifically it is gaining attention worldwide. We would like to say that what we have researched is just a small fragment and a limited view, and would like to correct and supplement any insufficient parts through more research of new records.

  • PDF

A Study of The Medical Classics in the '$\bar{A}yurveda$' (아유르베다'($\bar{A}yurveda$) 의경(醫經)에 관한 연구)

  • Kim, Kj-Wook;Park, Hyun-Kuk;Seo, Ji-Young
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.10
    • /
    • pp.119-145
    • /
    • 2008
  • Through a simple study of the medical classics in the '$\bar{A}yurveda$', we have summarized them as follows. 1) Traditional Indian medicine started in the Ganges river area at about 1500 B. C. E. and traces of medical science can be found in the "Rigveda" and "Atharvaveda". 2) The "Charaka(閣羅迦集)" and "$Su\acute{s}hruta$(妙聞集)", ancient texts from India, are not the work of one person, but the result of the work and errors of different doctors and philosophers. Due to the lack of historical records, the time of Charaka(閣羅迦) or $Su\acute{s}hruta$(妙聞)s' lives are not exactly known. So the completion of the "Charaka" is estimated at 1st$\sim$2nd century C. E. in northwestern India, and the "$Su\acute{s}hruta$" is estimated to have been completed in 3rd$\sim$4th century C. E. in central India. Also, the "Charaka" contains details on internal medicine, while the "$Su\acute{s}hruta$" contains more details on surgery by comparison. 3) '$V\bar{a}gbhata$', one of the revered Vriddha Trayi(triad of the ancients, 三醫聖) of the '$\bar{A}yurveda$', lived and worked in about the 7th century and wrote the "$Ast\bar{a}nga$ $Ast\bar{a}nga$ hrdaya $samhit\bar{a}$ $samhit\bar{a}$(八支集) and "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$(八心集)", where he tried to compromise and unify the "Charaka" and "$Su\acute{s}hruta$". The "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$" was translated into Tibetan and Arabic at about the 8th$\sim$9th century, and if we generalize the medicinal plants recorded in each the "Charaka", "$Su\acute{s}hruta$" and the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$", there are 240, 370, 240 types each. 4) The 'Madhava' focused on one of the subjects of Indian medicine, '$Nid\bar{a}na$' ie meaning "the cause of diseases(病因論)", and in one of the copies found by Bower in 4th century C. E. we can see that it uses prescriptions from the "BuHaLaJi(布唅拉集)", "Charaka", "$Su\acute{s}hruta$". 5) According to the "Charaka", there were 8 branches of ancient medicine in India : treatment of the body(kayacikitsa), special surgery(salakya), removal of alien substances(salyapahartka), treatment of poison or mis-combined medicines(visagaravairodhikaprasamana), the study of ghosts(bhutavidya), pediatrics(kaumarabhrtya), perennial youth and long life(rasayana), and the strengthening of the essence of the body(vajikarana). 6) The '$\bar{A}yurveda$', which originated from ancient experience, was recorded in Sanskrit, which was a theorization of knowledge, and also was written in verses to make memorizing easy, and made medicine the exclusive possession of the Brahmin. The first annotations were 1060 for the "Charaka", 1200 for the "$Su\acute{s}hruta$", 1150 for the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$", and 1100 for the "$Nid\bar{a}na$". The use of various mineral medicines in the "Charaka" or the use of mercury as internal medicine in the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$", and the palpation of the pulse for diagnosing in the '$\bar{A}yurveda$' and 'XiZhang(西藏)' medicine are similar to TCM's pulse diagnostics. The coexistence with Arabian 'Unani' medicine, compromise with western medicine and the reactionism trend restored the '$\bar{A}yurveda$' today. 7) The "Charaka" is a book inclined to internal medicine that investigates the origin of human disease which used the dualism of the 'Samkhya', the natural philosophy of the 'Vaisesika' and the logic of the 'Nyaya' in medical theories, and its structure has 16 syllables per line, 2 lines per poem and is recorded in poetry and prose. Also, the "Charaka" can be summarized into the introduction, cause, judgement, body, sensory organs, treatment, pharmaceuticals, and end, and can be seen as a work that strongly reflects the moral code of Brahmin and Aryans. 8) In extracting bloody pus, the "Charaka" introduces a 'sharp tool' bloodletting treatment, while the "$Su\acute{s}hruta$" introduces many surgical methods such as the use of gourd dippers, horns, sucking the blood with leeches. Also the "$Su\acute{s}hruta$" has 19 chapters specializing in ophthalmology, and shows 76 types of eye diseases and their treatments. 9) Since anatomy did not develop in Indian medicine, the inner structure of the human body was not well known. The only exception is 'GuXiangXue(骨相學)' which developed from 'Atharvaveda' times and the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$". In the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$"'s 'ShenTiLun(身體論)' there is a thorough listing of the development of a child from pregnancy to birth. The '$\bar{A}yurveda$' is not just an ancient traditional medical system but is being called alternative medicine in the west because of its ability to supplement western medicine and, as its effects are being proved scientifically it is gaining attention worldwide. We would like to say that what we have researched is just a small fragment and a limited view, and would like to correct and supplement any insufficient parts through more research of new records.

  • PDF