• Title/Summary/Keyword: Inner ear development

Search Result 17, Processing Time 0.019 seconds

Development of the Off-vertical Rotary Chair and Visual Stimulation system for Evaluation of the Vestibular Function (전정기능 평가를 위한 탈수직축 회전자극 시스템 및 HMD 시스템의 개발)

  • Kim Gyu-Gyeom;Ko Jong-Sun;Park Byung-Rim
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.377-380
    • /
    • 2001
  • The vestibular system located in the inner ear controls reflex body posture and movement. It has the semicircular canals sensing an angular acceleration and the otolith organs sensing a linear acceleration. With this organic signal, medical doctor decide if a person has disease or not. To obtain this data, a precision stimular system is considered. Robust control is needed to obtain eye signals induced by off-vertical axis rotation because of an unbalanced load produced by tilting the axis of the system upto 30 degrees. In this study, off-vertical axis rotatory system with visual stimulation system are developed. This system is consisted of head mounted display for generating horizontal, vertical, and three dimensional stimulus patterns. Furthermore wireless recording system using RF modem is considered for noiseless data transmission.

  • PDF

Development of the off-vertical rotatory chair and visual stimulation system for evaluation of the vestibular function (전정기능 평가를 위한 탈수직축 회전자극 시스템 및 HMD 시스템의 개발)

  • 김규겸;고종선;박병림;김인동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.325-332
    • /
    • 2001
  • The vestibular system located in the inner ear controls reflex body posture and movement, It has the semicircular canals sensing an angular acceleration and the otolith organs sensing a linear acceleration. With this organic signal, medical doctor decide if a person has disease or not. To obtain this data, a precision stimular system is considered. Robust control is needed to obtain eye signals induced by off-vertical axis rotation because of an unbalanced load produced by tilting the axis of the system upto 30 degrees. In this study, off-vertical axis rotatory system with visual stimulation system are developed. This system is consisted of head mounted display for generating horizontal, vertical, and three dimensional stimulus patterns. Furthermore wireless recording system using RF modem is considered for noiseless data transmission. Detailed data was described.

  • PDF

Changes of Cochlear Microphonics in Response to White Noise and NaCl Crystal in Guinea Pigs' Ears: Preliminary Study for Design of Electronic Ears (기니아 픽 청각기관(와우각)에서의 백색 잡음과 NaCl 결정에 의한 전기신호(Cochlear Microphonics) 변화 및 동신호 응용에 관한 연구)

  • Im, Deok-Hwan;Min, Byeong-Gu;No, Gwan-Tae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 1982
  • This is a preliminary animal experiment for development of the electronic ears for deaf patients. In 10 Guinea Pigs'ears, we have measured the changes of cochlear microphonics (CM) for Pure sound after application of 100dB white noise sound and NaCl crystal. In response to white noise sound, the amplitude of cochlear microphonics for pure sound has decreased by 30% in 30 minutes, then it has recovered to its initial control amplitude in 90minutes. In NaCl crystal application, the amplitude of cochlear microphonics for pure sound has decriased by 50% in 15minutes and has remained at reduced level. Also, the deaf Guinea Pig shows a motion reflex for sound when we apply electrical signals similar to cochlear microphonics to the electrodes located in the round window of the inner ear.

  • PDF

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Journal of Audiology & Otology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Korean Journal of Audiology
    • /
    • v.23 no.2
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

Utilizing cell-free DNA to validate targeted disruption of MYO7A in rhesus macaque pre-implantation embryos

  • Junghyun Ryu;Fernanda C. Burch;Emily Mishler;Martha Neuringer;Jon D. Hennebold;Carol Hanna
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.292-297
    • /
    • 2022
  • Direct injection of CRISPR/Cas9 into zygotes enables the production of genetically modified nonhuman primates (NHPs) essential for modeling specific human diseases, such as Usher syndrome, and for developing novel therapeutic strategies. Usher syndrome is a rare genetic disease that causes loss of hearing, retinal degeneration, and problems with balance, and is attributed to a mutation in MYO7A, a gene that encodes an uncommon myosin motor protein expressed in the inner ear and retinal photoreceptors. To produce an Usher syndrome type 1B (USH1B) rhesus macaque model, we disrupted the MYO7A gene in developing zygotes. Identification of appropriately edited MYO7A embryos for knockout embryo transfer requires sequence analysis of material recovered from a trophectoderm (TE) cell biopsy. However, the TE biopsy procedure is labor intensive and could adversely impact embryo development. Recent studies have reported using cell-free DNA (cfDNA) from embryo culture media to detect aneuploid embryos in human in vitro fertilization (IVF) clinics. The cfDNA is released from the embryo during cell division or cell death, suggesting that cfDNA may be a viable resource for sequence analysis. Moreover, cfDNA collection is not invasive to the embryo and does not require special tools or expertise. We hypothesized that selection of appropriate edited embryos could be performed by analyzing cfDNA for MYO7A editing in embryo culture medium, and that this method would be advantageous for the subsequent generation of genetically modified NHPs. The purpose of this experiment is to determine whether cfDNA can be used to identify the target gene mutation of CRISPR/Cas9 injected embryos. In this study, we were able to obtain and utilize cfDNA to confirm the mutagenesis of MYO7A, but the method will require further optimization to obtain better accuracy before it can replace the TE biopsy approach.

Immunohistochemical Localization of NMDA Receptor in the Auditory Brain Stem of Postnatal 7, 16 Circling Mouse (생후 7일, 16일된 circling mouse 청각 뇌줄기에서 N-메틸-D 아스파르트산염 수용체(NMDA receptor)에 대한 면역염색학적 분포)

  • Choi, In-Young;Park, Ki-Sup;Kim, Hye-Jin;Maskey, Dhiraj;Kim, Myeung-Ju
    • Applied Microscopy
    • /
    • v.40 no.2
    • /
    • pp.53-64
    • /
    • 2010
  • Glutamate receptors may play a critical role in the refinement of developing synapses. The lateral superior olivary nucleus (LSO)-medial nucleus of trapezoid body (MNTB) synaptic transmission in the mammalian auditory brain stem mediate many excitatory transmitters such as glutamate, which is a useful model to study excitatory synaptic development. Hearing deficits are often accompanied by changes in the synaptic organization such as excitatory or inhibitory circuits as well as anatomical changes. Owing to this, circling mouse whose cochlea degenerates spontaneously after birth, is an excellent animal model to study deafness pathophysiology. However, little is known about the development regulation of the subunits composing these receptors in circling mouse. Thus, we used immunohistochemical method to compare the N-Methyl-D-aspartate receptor (NMDA receptor) NR1, NR2A, NR2B distribution in the LSO which project glutamergic excitatory input into the auditory brainstem, in circling mouse of postnatal (p) 7 and 16, which have spontaneous mutation in the inner ear, with wild-type mouse. The relative NMDAR1 immunoreactive density of the LSO in circling mouse p7 was $128.67\pm8.87$ in wild-type, $111.06\pm8.04$ in heterozygote, and $108.09\pm5.94$ in homozygote. The density of p16 circling mouse was $43.83\pm10.49$ in wild-type, $40\pm13.88$ in heterozygote, and $55.96\pm17.35$ in homozygote. The relative NMDAR2A immunoreactive density of LSO in circling mouse p7 was $97.97\pm9.71$ in wild-type, $102.87\pm9.30$ in heterozygote, and $106.85\pm5.79$ in homozygote. The density of LSO in p16 circling was $47.4\pm20.6$ in wild-type, $43.9\pm17.5$ in heterozygote, and $49.2\pm20.1$ in homozygote. The relative NMDAR2B immunoreactive density of LSO in circling mouse p7 was $109.04\pm6.77$ in wild-type, $106.43\pm10.24$ in heterozygote, and $105.98\pm4.10$ in homozygote. the density of LSO in p16 circling mouse was $101.47\pm11.5$ in wild-type, $91.47\pm14.81$ in heterozygote, and $93.93\pm15.71$ in homozygote. These results reveal alteration of NMDAR immunoreactivity in LSO of p7 and p16 circling mouse. The results of the present study are likely to be relevant to understand the central change underlying human hereditary deafness.