• Title/Summary/Keyword: Inner Surface Crack

Search Result 94, Processing Time 0.035 seconds

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

Defect Evaluation for Weld Specimen of Bogie Using Infrared Thermography (적외선 서모그래피를 이용한 대차 용접시편의 결함 평가)

  • Kwon, Seok Jin;Seo, Jung Won;Kim, Jae Chul;Jun, Hyun Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.619-625
    • /
    • 2015
  • There is a large interest to find reliable and automatic methods for crack detection and quantification in the railway bogie frame. The non-destructive inspection of railway bogie frame has been performed by ultrasonic and magnetic particle testing in general inspection. The magnetic particle method has been utilized in the defect inspection of the bogie frame but the grinding process is required before inspection and the dust is developed resulting from the processing. The objective of this paper is to apply the inspection method of bogie frame using infra-red thermography. The infra-red thermography system using the excitation of eddy current was performed for the defect evaluation of weld specimen inserted artificial defects. The result shows that the infra-red thermography method can detect the surface and inner defects in weld specimen for bogie frame.

Effect of Ash Content in Base Paper on Fold Cracking of Coated Paper (원지의 충전물 함량이 도공지의 접힘 터짐에 미치는 영향)

  • Seo, Dongil;Oh, Kyu Deok;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • High loading of base paper is regarded as one of reasons to aggravate fold cracking of coated paper. But the relationship between the ash content of base paper and fold cracking of coated paper has not been shown yet. We investigated the effect of ash content in base paper on the fold cracking of coated paper. Handsheets with three different ash contents (19.5-23.5%) were prepared, and double layered coating were applied on the top side of the handsheets. A gravimetric water retention meter (AA-GWR) was employed to fold the paper with a uniform pressure after solid printing on the coated surface. The fold cracking was digitized by calculating the cracked area by means of an image analysis technique. Results suggested that high ash content in the base paper increased the fold cracking of the outer surface of coated papers. In the case of inner surface greater fold crack areas were obtained, and the number of cracks decreased because long and wide cracks were formed. Reduction in tensile strength and thickness appeared to give greater fold cracking for highly loaded papers.

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES (탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF

A Study on the Development of the System for Inspecting Cracks in the Inner Wall for Structures (구조물 내벽의 균열 검사를 위한 시스템 개발에 관한 연구)

  • 이상호;신동익;손영갑;이강문;마상준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.480-483
    • /
    • 1997
  • In this paper, we have proposed an automatic inspection system for cracks on the surface of a structure. The proposed system consists of the imaging system and the veh~cle system. The imaging system. a set of optical sensor, lens, illuminator, storage and their configuration, images the scene and store it on the hard disk. We adopted a linescan camera of 5000 pixel density to achieve high resolution without loss of simplicity. The vehicle system that moves the optical system IS ~mplemented by an AGV. The AGV moves forward at constant velocity and avoid obstacles to acquire a stable image. We have cmplemented an experimental system and have acquired images of the wall of hallway. The image is of 0.1-mmipixel resolution and the scanning time IS about 1 mlsec. The allow able scan.

  • PDF

The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe (ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향)

  • Lee, B.W.;Lee, J.S.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS (왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • 예병한;원용구
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF

Fracture Mechanics Analysis of Reactor Pressure Vessel Under Pressurized Thermal Shock-The Effect of Elastic-Plastic Behavior and Stainless Steel Cladding- (원자로 용기의 가압열충격에 대한 파괴역학 해석 - 탄소성 거동과 클래드부의 영향 -)

  • Ju, Jae-Hwang;Gang, Gi-Ju;Jeong, Myeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock(PTS). The PTS event means an event or transient in pressurized water reactors(PWRs) causing severe overcooling(thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored.

Comparison of the Friction-Loss Coefficient for the Gap of Two Contact Surfaces and a Crack (접촉한 두 평면과 균열한 틈새에서의 유동마찰계수 비교)

  • Nam, Ho-Yun;Choi, Byoung-Hae;Kim, Jong-Bum;Lee, Young-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1075-1081
    • /
    • 2011
  • A leak-detection method has been developed by measuring the pressure variation between the inner and outer heattransfer tubes of a double-wall tube steam generator. An experiment was carried out to measure the leak rate in the gap between two surfaces pressed with a hydraulic press in order to simulate the phenomena, and a correlation was determined for the leak rate in a micro gap. However, in the correlation, the gap width and friction coefficient were coupled with the surface roughness, which affects the two parameters. The two parameters were separated using a surface-contact model to develop a correlation for the friction coefficient. The correlation was compared with the existing correlations used for crack analysis. Although the applied ranges of Reynolds numbers were different, the developed correlation for Reynolds numbers of 0.1.0.35 showed similar tendencies to existing correlations used for higher Reynolds numbers.